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Security of a stream cipher

The standard assumption
KNOWN PLAINTEXT ATTACK

This implies knowledge of the keystream

z = z1, z2, . . . , zN .

When IV is used the opponent knows
z1 = z1,1, z1,2, . . . , z1,N , for IV = 1
z1 = z2,1, z2,2, . . . , z2,N for IV = 2
...
generated by the same key k. Could be a chosen IV attack.
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Different Types of Attacks

KEY RECOVERY ATTACK
Recover the secret key k.

DISTINGUISHING ATTACKS
Build a distinguisher that can distinguish the running key
Z = z1, z2, . . . , zN from random (or z1, z2, . . . in the IV case)

OTHER ATTACKS
RELATED: Prediction of the next symbol, ...
UNRELATED: Side-channel attacks (power analysis, timing attacks,
etc.), ...
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Attack techniques

Universal distinguishers
Apply known statistical tests

Time-memory tradeoff attacks
Decrease computational complexity by using memory

Guess-and-determine
Guess unknown things on demand

Correlation attacks
Dependence between output and internal unknown variables

Linear attacks
Apply linear approximations

Algebraic attacks
View your problem as the solution to a system of nonlinear equations
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Definition of the generator
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Generic attacks on stream ciphers

Exhaustive key search: Search all 2k different keys and compare the
keystream with the received value.

Rough security goal: There should be no attack better than exhaustive key
search.
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Universal distinguishers

Distinguishing attack: Run a general statistical analysis on the running key

Z = z1, z2, . . . , zN

to see if it acts like a random sequence.

You can use any statistical test.

(Lund University) Stream Ciphers: Cryptanalytic Techniques Summer school 2007 8 / 56



Examples:

Pearson’s chi-square test: A test of goodness of fit establishes whether or
not an observed frequency distribution differs from a theoretical
distribution.

χ2 =
n∑

i=1

(Oi − Ei)2

Ei

where Oi = an observed frequency; Ei = an expected (theoretical)
frequency, asserted by the null hypothesis. χ2 is approximately
χ2-distributed with n− 1 degree of freedom when N is large.

The chi-square distribution for n− 1 degree of freedom shows the
probability of observing this difference (or a more extreme difference than
this).
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cont

Frequency test: n0 is the number of 0’s, n1 is the number of 1’s,
N = n0 + n1.

X =
(n0 −N/2)2

N/2
+

(n1 −N/2)2

N/2
=

(n0 − n1)2

N

Poker test: Split z into l non-overlapping parts of length m. Let ni be the
number of sequences of “type i” and length m, for i = 1..2m.

χ2 =
2m∑
i=1

(ni − l · 2−m)2

l · 2−m

will have 2m − 1 degrees of freedom.
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Statistical packages

NIST statistical test suite, DIEHARD, ...

Run any available software.

The problem is that it is unlikely that you will find a statistical weakness in
this way...
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Chosen IV statistical attacks

Filiol, Saarinen

Chosen IV: Ask for the keystreams for various IV values.

In this case: Select some IV bits (iv1, iv2, . . . ivt). Keep the remaining IV
bits fixed (key is also fixed). Then

zi = Fi(iv1, iv2, . . . ivt),

where Fi() is an unknown Boolean function in t variables.
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Example: First keystream bit

By running through all IV values we get for example

F1(0, 0, . . . , 0) = 0, F1(0, 0, . . . , 1) = 0, F1(0, . . . , 1, 0) = 1, . . . ,

i.e., the truth table of F1.

We can reconstruct F1 to, for example, ANF,

F1(iv1, iv2, . . . ivt) = iv2 + iv1iv2 + . . . .

A chosen IV statistical attacks examines statistical properties of F (by
possibly repeating the above several times).
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The d-monomial test

Compute the ANF of Fi.
Count the number of monomials of degree d in Fi, and call this M .

The expected number of monomials of degree d in a random Boolean
function is 1

2

(
t
d

)
.

Check with a χ2 test, χ2 = (2M −N)2/N , where N =
(

t
d

)
.
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Application of the d-monomial test

Other chosen IV tests are possible, e.g., a bit flipping test. (Flip one IV bit
and check how often the output bit is flipped)

Saarinen applied chosen IV tests on all 34 proposals in eSTREAM phase 1.
The result was that 6-8 ciphers could be distinguished from random.

Chosen IV tests attacks the initialization process of a cipher. Most
eSTREAM candidates that were attacked changed their initilization.
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Cipher-specific statistical attacks

Usually, a close study of the design of a cipher makes the detection of a
statistical weakness more probable than universal tests.

Example: RC4

i := 0
j := 0
while GeneratingOutput:
i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap(S[i],S[j])
output S[(S[i] + S[j]) mod 256]

endwhile
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Mantin, Shamir observation

P (z2 = 0) ≈ 2/256.

“Proof”: Let St be the stored permutation at time t.

1. When S0[2] = 0 (and S0[1] 6= 2) then P (z2 = 0) = 1.
2. When S0[2] 6= 0 then P (z2 = 0) = 1/256.
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Time-memory tradeoff attacks

The basic attack:
At time t the generator is in a certain state st. It will produce output zt

and go to a new state st+1, output zt+1,... A CYCLE

Assume that this cycle has 2s different states.

Select 2r random states. For each state, generate the roughly s bits of
keystream (starting in the state). Put (state, keystream) in a table (size
2r) sorted according to keystream.

For each s bit segment of the observed keystream, check if it is in the
table.
For r = s/2, the table size is 2s/2 and the expected length of keystream is
about 2s/2.

Conclusion:
Number of state bits must be at least twice the number of key bits.
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A different scenario

Assume that we can observe many keystreams generated by different keys.

Trivial attack: Select 2r random keys, generate k bits of keystream, put
(key, keystream) in a table sorted according to keystream.

Then ask for many k bits keystreams, encrypted under different keys. The
table size is 2k/2 and the expected total length of keystreams is about 2k/2.

There are many variations of these TMTO attacks, including IV values, for
example by Hong, Sarkar.
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Attacking a specific cipher: Guess-and-determine

Idea: Guess unknowns when you need to be able to determine something
else (run through all guesses).
Example: A5/1

s1 + t1 + u1 = z1

sd1 = x, td2 = x, ud3 = x + 1

s2 + t2 + u1 = z2, . . .
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Attacks through BM-algorithm

For LFSR-based stream ciphers, the Berlekamp-Massey algorithm can be
used.

Linear complexity of s, L(s) = Length of the shortest LFSR that can
generate s.

For a length N randomly selected sequence s, the linear complexity is
almost always around N/2.

BM-algorithm computes the linear complexity in complexity at most
O(N2).
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Combining sequences

Let s and s′ be two sequences.

If s′′ is constructed as s′′i = si + s′i then L(s′′) ≤ L(s) + L(s′).

If s′′ is constructed as s′′i = si · s′i then L(s′′) ≤ L(s) · L(s′).
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The nonlinear combination generator

The linear complexity of the keystream sequence z is at most
S(L1, . . . , Ll), evaluated over the integers.

The Boolean function S should have high degree due to attacks from
BM-algorithm.
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Correlation attacks

Assume there is a dependence between one LFSR and the output

All possible LFSR sequences are codeword in a linear code C.
Reconstructing the initial state is the problem of decoding the code C on
BSC (1/2 + ε).
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Correlation attacks, continued

First approach: Test all possible LFSR sequences (Siegenthaler). This
will require keystream length roughly N = L/(1− h(0.5 + ε)) to find the
correct one (ML decoding), where L is the LFSR length.
If we have very long keystream we can decode with less complexity.

Second approach: If there are low weight parity checks (low weight
feedback polynomial), we can use iterative decoding (Meier, Staffelbach).

There are lots of other proposed methods to reconstruct the LFSR.
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Linear approximation attacks - basic ideas

Replace nonlinear parts by a linear approximation.

Find an expression including keystream symbols where all unknown
variables are eliminated, ∑

i

dizn+i = 0.

Binary case, let Bn =
∑

i dizn+i. Then P (Bn = 0) = 1/2 + ε.

Collect as many samples as we need to distinguish the sequence
B1, B2, . . . from random.

We need roughly 1/ε2 samples.

Piling-up lemma: Let P (Xi = 0) = 1/2 + 1/2εi and X = X1 ⊕X2,
X1 and X2 independent. Then P (X = 0) = 1/2 + 1/2ε, where

ε = ε1ε2.
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Case study: Achterbahn

Nonlinear combination using NLFSR sequences, all with large period.

8 NLFSRs. Sizes between 22 and 31 bits.

Reduced variant takes output of each NLFSR as input to Boolean
function.

Full variant takes a linear combination of some bits in NLFSR as
input to Boolean function.

S(x1, . . . , x8) = x1 +x2 +x3 +x4 +x5x7 +x6x7 +x6x8 +x5x6x7 +x6x7x8.
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Description of Achterbahn (original)

Each NLFSR is clocked similarily to a LFSR, except that the feedback
bit is not a linear function, but a polynomial of degree 4. Details of
this clocking are not improtant for us.

NLFSR i is denoted Ri and has length Ni.

Let xi(t) be the output of Ri at time t.

The period Ti of the sequence from Ri is Ti = 2Ni − 1.

The linear complexity Li of the sequence from Ri is large (close to
2Ni).
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Linear Complexity of Achterbahn

S(x1, . . . , x8) = x1 +x2 +x3 +x4 +x5x7 +x6x7 +x6x8 +x5x6x7 +x6x7x8.

The keystream bit is computed by z(t) = S(x1(t), . . . , x8(t)). The
linear complexity of the keystream sequence z is at most

L = S(L1, . . . , L8),

It would be insecure to combine the small nonlinear registers using a
linear function. Indeed, in this case, the linear complexity L of
Achterbahn would be bounded by 8× 231 since 31 is the length of the
largest register.

For Achterbahn, S is not linear, but its algebraic degree is 3. Roughly,
the linear complexity of Achterbahn’s outputs is :

L ≤ 228 × 229 × 231 = 288.
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Linear Cryptanalysis

z(t) = S(x1(t), . . . , x8(t))
= x1(t)⊕ x2(t)⊕ x3(t)⊕ x4(t)⊕ x5(t)⊕ x7(t)

x6(t)x7(t)⊕ x6(t)x8(t)⊕ x5(t)x6(t)x7(t)⊕ x6(t)x7(t)x8(t).

Introduce the notation l(t) = x1(t)⊕ x2(t)⊕ x3(t)⊕ x4(t). We have
linear approximations,

z(t) = l(t)⊕ x5(t) with probability 10/16,

z(t) = l(t)⊕ x6(t) with probability 12/16,

z(t) = l(t)⊕ x7(t) with probability 12/16,

z(t) = l(t)⊕ x8(t) with probability 10/16.

In particular, we focus on the second approximation,

z(t) = l(t)⊕ x6(t), (1)

with probability 12
16 = 0.75 = 0.5 (1 + 0.5). Therefore the bias is ε = 0.5.
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Construction of Parity Checks

Let
ll(t) = l(t)⊕ l(t + T1).

This expression does not contain any term in x1. Similarly, define

lll(t) = ll(t)⊕ ll(t + T2),
llll(t) = lll(t)⊕ lll(t + T3).

Here llll(t) contains no term in x2 or x3, so it is a combination of bits
coming from the register R4 only. Thus it satisfies

llll(t) = llll(t + T4).

In other terms, we have the following relation on the bits l(i),

0 = l(t) + l(t + T1) + l(t + T2) + l(t + T3) + l(t + T4)
+ l(t + T1 + T2) + l(t + T1 + T3) + l(t + T1 + T4)
+ l(t + T2 + T3) + l(t + T2 + T4) + l(t + T3 + T4)
+ l(t + T1 + T2 + T3) + l(t + T1 + T2 + T4) + l(t + T1 + T3 + T4)
+ l(t + T2 + T3 + T4) + l(t + T1 + T2 + T3 + T4).
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Parity checks again

l(t)⊕ l(t + Ti) does not depend on the variable xi.

The sequence generated by Ri has characteristic polynomial xTi − 1.
Hence, we have xi(t + Ti)⊕ xi(t) = 0.

Example:
Sequence produced by function F (t) = x1(t) + x2(t) has characteristic
polynomial

g(x) = (xT1 − 1)(xT2 − 1)

giving a parity check equation involving 4 terms.

F (t)⊕ F (t + T1)⊕ F (t + T2)⊕ F (t + T1T2) = 0
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Combining parity checks and approximations

Use the approximation z(t) = x1(t)⊕ x2(t)⊕ x3(t)⊕ x4(t)⊕ x6(t).
Creating parity checks as above will involve 32 keystream bits (and 32
approximations) distant at most

Tmax = T1 + T2 + T3 + T4 + T6 = 381681659 ' 228.51

positions.
But l(t)⊕ x6(t) is only an approximation of the output function. However
we sum up 32 times the linear approximation over different values of t,
which has the effect of multiplying the biases.
The parity check is satisfied by the sequence z(t) with probability

0.5
(
1 + ε32

)
= 0.5

(
1 +

1/21
232

)
.

Therefore if we consider a sequence of 264 output bits and evaluate all the
parity checks, we will detect this bias.
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Improvement: Guessing one register

A natural extension - guess the initial content of register R1. Then, we
can eliminate the term y1(t) in the previous linear approximation.
Consequently, the weight of the parity check drops from 32 to 16, bringing
the bias from 2−32 to 2−16.

For the correct guess of R1, we detect a bias by looking at 232 keystream
bits, while there is usually no bias for incorrect guesses.

This attack costs about 255 computational steps and requires 232

keystream bits. For the full Achterbahn, the number of guesses for R1 is
229 instead of 223 increasing the complexity of the key recovery from 255

to 261.
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Summary of results

Approximation:

z(t) = x1(t)⊕ x2(t)⊕ x3(t)⊕ x4(t)⊕ x6(t)

with bias ε = 0.5
The parity check equation is:

(xT1 − 1)(xT2 − 1)(xT3 − 1)(xT4 − 1)(xT6 − 1) = 0

and it has 32 terms ⇒ total bias ε = 2−32. A distinguishing attack
requiring 264 samples exists.

Improvement: Guess R1 ⇒ parity check has only 16 terms so 232

samples are required by the distinguisher. Need to add a factor of 222

giving a key recovery attack with computational complexity 254 and
using 232 keystream bits.

(Lund University) Stream Ciphers: Cryptanalytic Techniques Summer school 2007 35 / 56



Description of Achterbahn (version 2)

10 NLFSRs instead of 8. Sizes between 19 and 32 bits.

Still has a reduced and a full variant.

(Lund University) Stream Ciphers: Cryptanalytic Techniques Summer school 2007 36 / 56



Description of Achterbahn (version 2)

S(x1, . . . , x10) = x1 + x2 + x3 + x9 + G(x4, x5, x6, x7, x10)
+(x8 + x9)(G(x4, x5, x6, x7, x10) + H(x1, x2, x3, x4, x5, x6, x7, x10)),

where

G(x4, x5, x6, x7, x10) = x4(x5 ∨ x10) + x5(x6 ∨ x1/27) + x6(x4 ∨ x10)
+x7(x4 ∨ x6) + x10(x5 ∨ x7)

and

H(x1, x2, x3, x4, x5, x6, x7, x10) = x2 + x5 + x7 + x10 + (x3 + x4)x6

+(x1 + x2)(x3x6 + x6(x4 + x5)).

Resiliency of the function is 5.
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Notation

Length of register Ri is denoted Ni.

N1 19 N6 27
N2 22 N7 28
N3 23 N8 29
N4 25 N9 31
N5 26 N10 32

Period of register Ri is denoted Ti, hence Ti = 2Ni − 1.

Bias ε of an approximation A of S is given as ε = 2Pr(S = A)− 1.

Samples needed to distinguish sequence generated by S, using A is given
as

# samples needed =
1
ε2
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Achterbahn version 2 and Nonlinear approximations

Nonlinear approximations can be used as well as linear ones.

The cubic approximation

C(x1, . . . , x10) = x4 + x6x9 + x1x2x3.

with bias 2−6.

Guess the state of R4 and use the characteristic polynomial

g(x) = (xT6T9 − 1)(xT1T2T3 − 1)

Total bias is ε = 2−24 so 248 samples are needed. Computational
complexity is 2482N4 = 273.

Distance between first and last bit in parity check is
T1T2T3 + T6T9 ≈ 264 bits.

Solution: Restrict keystream length to 263 bits.
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Attack on Achterbahn (version 2)

We use the quadratic approximation

Q(x1, . . . , x10) = x1 + x2 + x3x8 + x4x6.

x3x8 + x4x6.

with bias 2−5.

Denote keystream sequence by z(t) and sequence produced by Q by
z′(t).

Use characteristic polynomial

g(x) = (xT3T8 − 1)(xT4T6 − 1)

which gives a parity check equation with 4 terms:

d(t) = z(t)⊕ z(t + T3T8)⊕ z(t + T4T6)⊕ z(t + T3T8 + T4T6)
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Attack on Achterbahn (version 2)

We use the quadratic approximation

Q(x1, . . . , x10) = x1 + x2 +

x3x8 + x4x6.

x3x8 + x4x6.

with bias 2−5.

Denote keystream sequence by z(t) and sequence produced by Q by
z′(t).
Use characteristic polynomial

g(x) = (xT3T8 − 1)(xT4T6 − 1)

which gives a parity check equation with 4 terms:

d(t) = z(t)⊕ z(t + T3T8)⊕ z(t + T4T6)⊕ z(t + T3T8 + T4T6)

(Lund University) Stream Ciphers: Cryptanalytic Techniques Summer school 2007 40 / 56



With probability α = 1
2(1 + 2−20) we have

d(t) α= z′(t)⊕ z′(t + T3T8)⊕ z′(t + T4T6)⊕ z′(t + T3T8 + T4T6)
= xt

1 ⊕ xt
2 ⊕ xt+T3T8

1 ⊕ xt+T3T8
2 ⊕ xt+T4T6

1 ⊕ xt+T4T6
2

⊕xt+T3T8+T4T6
1 ⊕ xt+T3T8+T4T6

2 .

Amount of samples needed is 240.

With N1 = 19 and N2 = 22 the computational complexity is
219+22+40 = 281.

Distance between first and last bit in parity check is
T3T8 + T4T6 ≈ 253.
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Improvement by decimation

We note that

R1(t) = R1(t + T1) = R1(t + 219 − 1).

so for all keystream bits distance T1 apart, x1 will always contribute
with the same value.
Take the sequence

d′(t) = z(tT1)⊕ z(tT1 + T3T8)⊕ z(tT1 + T4T6)⊕ z(tT1 + T3T8 + T4T6)
α
= xtT1

2 ⊕ xtT1+T3T8
2 ⊕ xtT1+T4T6

2 ⊕ xtT1+T3T8+T4T6
2 ⊕ γ(t),

where

γ(t) = xtT1
1 ⊕ xtT1+T3T8

1 ⊕ xtT1+T4T6
1 ⊕ xtT1+T3T8+T4T6

1

is a constant (0 or 1).
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Amount of keystream needed:

253 + 219240 = 259.02

Width of parity check

We take every T th
1 sample

Number of samples needed
����*

�
�
�
��

HH
HHY

Computational complexity:

240222 = 262

Number of keystream bits Guess register R2

����*
PPPPPi

Computational complexity, full variant: 265
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Improving the computational complexity

Assumption: The attacker observes 259.02 keystream bits.
step 1: Produce d′(t).

d′(t) = z(tT1)⊕ z(tT1 + T3T8)⊕ z(tT1 + T4T6)⊕ z(tT1 + T3T8 + T4T6)

and save the sequence in a 240 bit memory.
Computational complexity: ??
step 2:
Straightforward approach: Compare d′(t) with

xtT1
2 ⊕ xtT1+T3T8

2 ⊕ xtT1+T4T6
2 ⊕ xtT1+T3T8+T4T6

2

for 0 ≤ t < 240 and all initial states of R2.
But T2 = 222 − 1 � 240 so d′(t + iT2), ∀i, will be compared with the
same value.
Improvement: Build a table with values in d′(t).
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step 2: Build a table with values in d′(t).

Position in d’(t) # Zeros # Ones

0+iT2

1+iT2

2+iT2
...

T2+iT2

Computational complexity: 240.
Memory needed: 222 words.
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step 3: Recover R2. For each initial state of R2 the sum of the four bits

xtT1
2 ⊕ xtT1+T3T8

2 ⊕ xtT1+T4T6
2 ⊕ xtT1+T3T8+T4T6

2

0 ≤ t < T2, is found. All positions can be taken modulo T2.
Add the number in the stored table depending on if it is 0 or 1.
The bias will be detected for the initial state.
Computational complexity: 244 (247 for full variant).

(If bias is detected for more states, then we can do the same thing,
shifting our sequence one bit.)
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Total computational complexity

Most expensive operation is to go through all states (244 or 247).

However, we still need to use keystream bits 259.02 bits apart when we
create the sequence d′(t). But we use only 240 bits.

Conservative claim: Computational complexity is 259.02 (on both
reduced and full Achterbahn).
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Algebraic attacks

Describe the relation between known keystream bits and key bits or state
bits as nonlinear equations,

f(z1, z2, . . . , k0, k1, . . . , kn) = 0.

Try to solve the system of nonlinear equations.

Particulars for stream ciphers: If the generator has a linear update,
algebraic attacks are particularly strong.

z1 = f(k0, k1, . . . , kn),

z2 = f(L(k0, k1, . . . , kn)),

z3 = f(L2(k0, k1, . . . , kn)), ...
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Algebraic attacks

If we find a low degree relation,

z1 = f(k0, k1, . . . , kn),

where for example deg(f) = d, all equations

zi = f(Li−1(k0, k1, . . . , kn)),

will have the same degree.

Relinearization: If we collect
(
n
d

)
such equations we can solve the system

by relinearization. We replace every monomial (degree≤ d) by a new
variable, getting a linear system.
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Algebraic attacks

If we do not have linear update, the situation is close to the case of
algebraic attacks on block ciphers.

We may try to get low degree and/or overdefined systems of equations.

We may try to solve them through XL, XLS, Gröbner basis techniques, ...
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Case study: Toyocrypt

Toyocrypt is a stream cipher proposal that entered the second evaluation
phase of the Japanese Cryptrec call for primitives, later rejected.

Toyocrypt is a filter generator with filtering function

f(s0, .., s127) =

s127 +
62∑
i=0

sisαi + s10s23s32s42

+s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59 +
62∏
i=0

si.
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Toyocrypt, continued

We have relations of the form

z1 = f(s0, .., s127)

z2 = f(L(s0, .., s127)),

z3 = f(L2(s0, s1, . . . , s127)), ...

But f has degree 63...

Use low weight multiples: Multiply z = f(x) by a new polynomial g(x),

z · g(x) = f(x)g(x),

such that f(x)g(x) has low degree.
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Toyocrypt, continued

Look for a low degree common divisor g′ to high degree monomials in f
and multiply with (g′ − 1).

For f(s0, .., s127), use g(x) = (s23 − 1). Then deg(f(x)g(x)) = 3.

We get one new degree 3 equation for each keystream bit. Using
relinearization we need T =

(
128
3

)
bits and complexity T 3 with Gaussian

elimination or slightly lower complexity with other methods.
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Other attacks: Differential attacks

Traditionally not as essential as in block cipher cryptanalysis.

BUT, in chosen IV attacks differential attacks are applicable.

Many recent stream cipher proposals are close to block ciphers, e.g.,
eSTREAM candidates Salsa20, LEX. Tools from block cipher cryptanalysis
will be applicable here.
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Other attacks: Side-channel attacks

In a side-channel attack we attack an implementation of a stream cipher
rather than the algorithm itself.

The attack uses a side-channel, for example measuring the power
consumption of the implementation.

The key question: How expensive is it to implement an algorithm in a
presumably secure way when side-channels exist?

Not too much work has been done on side-channel attacks on stream
ciphers.
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Conclusions

We have reviewed basic ideas of many different approaches to
cryptanalysis of stream ciphers.

We have seen a few case studies.

(Lund University) Stream Ciphers: Cryptanalytic Techniques Summer school 2007 56 / 56


	Achterbahn (version 2)
	Notation
	Achterbahn version 2 and Nonlinear approximations
	Attack on reduced variant

	Conclusions

