Boolean Functions for stream ciphers

Anne Canteaut
INRIA-Rocquencourt projet CODES
Anne.Canteaut@inria.fr
http://www-rocq.inria.fr/codes/Anne.Canteaut/

ECRYPT summer school - May 2007

Outline

- Basic properties of Boolean functions for LFSR-based generators
- Other representations of Boolean functions
- Correlation attacks and related criteria
- Distance to affine functions and Walsh transform
- Algebraic attacks and related criteria
- Some practical constructions

Basic properties of Boolean functions for LFSR-based generators

Boolean functions

Definition. A Boolean function of \boldsymbol{n} variables is a function from $\mathbf{F}_{\mathbf{2}}^{\boldsymbol{n}}$ into \mathbf{F}_{2}.

Truth table of a Boolean function.

x_{1}	0	1	0	1	0	1	0	1
x_{2}	0	0	1	1	0	0	1	1
x_{3}	0	0	0	0	1	1	1	1
$f\left(x_{1}, x_{2}, x_{3}\right)$	0	1	0	0	0	1	1	1

Hamming weight of a Boolean function.
The Hamming weight of a Boolean function $f, \boldsymbol{w} t(f)$, is the Hamming weight of its value vector.

A function of n variables is balanced if and only if $\boldsymbol{w} t(f)=2^{n-1}$.

Combination generator

where f is a balanced Boolean function of \boldsymbol{n} variables.

Filter generator

s (keystream)

$$
\forall t \geq 0, \quad s_{t}=f\left(u_{t+\gamma_{1}}, u_{t+\gamma_{2}}, \ldots, u_{t+\gamma_{n}}\right)
$$

Algebraic normal form (ANF)

Monomials in $\mathrm{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}+x_{1}, \ldots, x_{n}^{2}+x_{n}\right)$:

$$
\left\{x^{u}, u \in \mathrm{~F}_{2}^{n}\right\} \text { where } x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

Example: $x^{1011}=x_{1} x_{3} x_{4}$.

Proposition.

Any Boolean function of \boldsymbol{n} variables has a unique polynomial representation in $\mathrm{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}+x_{1}, \ldots, x_{n}^{2}+x_{n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathrm{~F}_{2}^{n}} a_{u} x^{u}, \quad a_{u} \in \mathrm{~F}_{2}
$$

Moreover, the coefficients of the ANF and the values of f satisfy:

$$
a_{u}=\bigoplus_{x \preceq u} f(x) \text { and } f(u)=\bigoplus_{x \preceq u} a_{x}
$$

where $\boldsymbol{x} \preceq \boldsymbol{y}$ if and only if $\boldsymbol{x}_{\boldsymbol{i}} \leq \boldsymbol{y}_{\boldsymbol{i}}$ for all $\boldsymbol{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

Computing the ANF

x_{1}	0	1	0	1	0	1	0	1
x_{2}	0	0	1	1	0	0	1	1
x_{3}	0	0	0	0	1	1	1	1
$f\left(x_{1}, x_{2}, x_{3}\right)$	0	1	0	0	0	1	1	1

$$
\begin{aligned}
& a_{000}=f(000)=0 \\
& a_{100}=f(100) \oplus f(000)=1 \\
& a_{010}=f(010) \oplus f(000)=0 \\
& a_{110}=f(110) \oplus f(010) \oplus f(100) \oplus f(000)=1 \\
& a_{001}=f(001) \oplus f(000)=0 \\
& a_{101}=f(101) \oplus f(001) \oplus f(100) \oplus f(000)=0 \\
& a_{011}=f(011) \oplus f(001) \oplus f(010) \oplus f(000)=1 \\
& a_{111}=\bigoplus_{x \in \mathrm{~F}_{2}^{3}} f(x)=w t(f) \bmod 2=0
\end{aligned}
$$

$$
f=x_{1}+x_{1} x_{2}+x_{2} x_{3}
$$

Degree and linear complexity

Definition.

The degree of a Boolean function is the degree of the largest monomial in its ANF.

Proposition. The weight of an \boldsymbol{n}-variable function \boldsymbol{f} is odd if and only if $\operatorname{deg} \boldsymbol{f}=\boldsymbol{n}$.

Degree and linear complexity of the combination generator.
Proposition. [Rueppel - Staffelbach 87]
For \boldsymbol{n} LFSRs with primitive feedback polynomials and distinct lengths, the linear complexity of the keystream sequence generated by the combination of these LFSR by f is

$$
\Lambda=f\left(L_{1}, \ldots, L_{n}\right)
$$

where f is evaluated over integers.
Example: Geffe generator (1973)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{1} x_{2}+x_{2} x_{3} . \Longrightarrow \Lambda=L_{1}+L_{1} L_{2}+L_{2} L_{3} .
$$

Degree and linear complexity (2)

Degree and linear complexity of the filter generator.

Proposition. [Key76, Rueppel 86]

The linear complexity $\boldsymbol{\Lambda}$ of the keystream sequence generated by an LFSR of length L filtered by f satisfies

$$
\Lambda \leq \sum_{i=0}^{\operatorname{deg} f}\binom{L}{i}
$$

Moreover, if L is a large prime,

$$
\Lambda \geq\binom{ L}{\operatorname{deg} f}
$$

for most filtering functions.

Degree and basic algebraic attacks

Communication Theory of Secrecy Systems (1949), page 711.

"Using functional notation we have for enciphering $E=f(K, M)$.
Given (or assuming) $M=m_{1}, m_{2}, \ldots, m_{s}$ and $\boldsymbol{E}=e_{1}, e_{2}, \ldots, e_{s}$, the cryptanalyst can set up equations for the different key elements $k_{1}, k_{2}, \ldots, k_{r}$ (namely the enciphering equations).

$$
\begin{aligned}
e_{1} & =f_{1}\left(m_{1}, m_{2}, \ldots, m_{s} ; k_{1}, \ldots, k_{r}\right) \\
e_{2} & =f_{2}\left(m_{1}, m_{2}, \ldots, m_{s} ; k_{1}, \ldots, k_{r}\right) \\
& \vdots \\
e_{s} & =f_{s}\left(m_{1}, m_{2}, \ldots, m_{s} ; k_{1}, \ldots, k_{r}\right)
\end{aligned}
$$

All is known, we assume, except the k_{i}. Each of these equations should therefore be complex in the k_{i}, and involve many of them. Otherwise the enemy can solve the simple ones and then the more complex ones by substitution."

Set up the enciphering equations:

$$
\left\{\begin{array}{l}
s_{0}=f\left(x_{0}, \ldots, x_{L-1}\right) \\
s_{1}=f \circ \mathcal{L}\left(x_{0}, \ldots, x_{L-1}\right) \\
s_{t}=f \circ \mathcal{L}^{t}\left(x_{0}, \ldots, x_{L-1}\right)
\end{array}\right.
$$

System of equations with L variables of degree $d=\operatorname{deg}(f)$.
\Longrightarrow Solve the system by linearization

$$
\sum_{i=1}^{d}\binom{n}{i} \simeq \frac{L^{d}}{d!} \text { keystream bits }
$$

Time complexity: $L^{3 d}$ operations.

Other representations of Boolean functions

Reed-Muller codes

Definition. [Reed 54], [Muller54]
The Reed-Muller code of length 2^{n} and order $r, \boldsymbol{R M}(r, n)$, is the linear code formed by the value vectors of all Boolean functions of \boldsymbol{n} variables and degree at most \boldsymbol{r}.

Proposition. $R M(r, n)$ has minimum distance 2^{n-r}.

Complexity of a Boolean function [Wegener 87]

$C_{\Omega}(f)=$ smallest number of gates of a circuit computing f, whose gates belong to Ω.

Usually, $\Omega=\mathcal{B}_{2}$, set of Boolean functions of 2 variables.
For Programmable Logic-Arrays, $\Omega=(\wedge, \vee, \neg)$.

Example.

- $x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{1} x_{5}+x_{2} x_{3}+x_{2} x_{4}+x_{2} x_{5}+x_{3} x_{4}+x_{3} x_{5}$ $+x_{4} x_{5}-19$ gates.
- $\left[\left(z+x_{4}\right)\left(z+x_{5}\right)+z\right]+\left[y\left(x_{1}+x_{3}\right)+x_{1}\right]$ with $z=y+x_{3}$ and $y=x_{1}+x_{2}-10$ gates

The Shannon effect [Shannon 49], [Lupanov 70]
For all $\boldsymbol{n} \geq \mathbf{9}$, "almost all" Boolean functions of \boldsymbol{n} variables have complexity $\boldsymbol{C}_{\mathcal{B}_{2}}$ greater than $2^{n} / n$.

Correlation attacks and related criteria

Correlation attack [Siegenthaler 85]

Problem:

Recover the initial state of the target register from the knowledge of some keystream bits.

Correlation attack on a combination generator

with $\operatorname{Pr}\left[f\left(x_{1}, \ldots, x_{n}\right) \neq x_{i}\right]=P\left[s_{t} \neq \sigma_{t}\right] \neq \frac{1}{2}$.

Correlation-immune functions

$$
\operatorname{Pr}\left[f\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)=1 \mid \boldsymbol{X}_{i}=1\right]=\operatorname{Pr}\left[f\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)=1 \mid \boldsymbol{X}_{i}=0\right] .
$$

In terms of Hamming distance

	$x \in \mathrm{~F}_{2}^{n}, x_{i}=0$					$x \in \mathrm{~F}_{2}^{n}, x_{i}=1$			
f	f_{1}					f_{2}			
$\boldsymbol{x} \mapsto \boldsymbol{x}_{\boldsymbol{i}}$	0	0		0	0	1	1	1	1
$f+x_{i}$			f						

f correlation-immune: $\boldsymbol{w} t\left(f_{1}\right)=w t\left(f_{2}\right)$.
$\Longleftrightarrow d\left(f, x_{i}\right)=w t\left(f_{1}\right)+w t\left(f_{2}+1\right)=w t\left(f_{1}\right)+\left(2^{n-1}-w t\left(f_{2}\right)\right)=2^{n-1}$.

Correlation-immunity of order t [Siegenthaler 84]

Definition. A Boolean function \boldsymbol{f} of \boldsymbol{n} variables is \boldsymbol{t}-th order correlationimmune if, for any subset $T \subset\{1, \ldots, n\},|T|=t$, for any $a \in \mathbf{F}_{2}^{t}$,

$$
\operatorname{Pr}\left[f\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)=\mathbf{1} \mid \forall i \in T, \boldsymbol{X}_{i}=a_{i}\right]=\operatorname{Pr}\left[\boldsymbol{f}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)=\mathbf{1}\right]
$$

Proposition. [Xiao-Massey88]
f is t-th order correlation-immune if and only if for all $\alpha \in \mathrm{F}_{2}^{n}$ with $1 \leq w t(\alpha) \leq t, d(f, \alpha \cdot x)=2^{n-1}$.

Definition. A t-resilient function is a balanced t-th order correlationimmune function.
\Longrightarrow The correlation-immunity order of a combining function must be high.

Degree of a correlation-immune function

Theorem. [Siegenthaler 84]
Let f be a Boolean function of n variables. Then, its correlationimmunity order t satisfies

$$
\operatorname{deg}(f)+t \leq n
$$

Moreover, if f is balanced,

$$
\operatorname{deg}(f)+t \leq n-1
$$

Distance to affine functions and Walsh transform

Walsh transform of a Boolean function

Imbalance of a Boolean function.
For any Boolean function \boldsymbol{f} of \boldsymbol{n} variables

$$
\mathcal{F}(f)=\sum_{x \in \mathrm{~F}_{2}^{n}}(-1)^{f(x)}=2^{n}-2 w t(f)
$$

Linear functions of n variables.

$$
\varphi_{a}: x \longmapsto a \cdot x
$$

Walsh transform of a function f of n variables

$$
\begin{aligned}
& \mathrm{F}_{2}^{n} \longrightarrow \mathrm{C} \\
& a \quad \longmapsto \mathcal{F}\left(f+\varphi_{a}\right)=\sum_{x \in \mathrm{~F}_{2}^{n}}(-1)^{f(x)+a \cdot x}
\end{aligned}
$$

Computing the Walsh transform

\boldsymbol{f}	0	1	0	0	0	1	1	1
$\left(f_{1}+\boldsymbol{f}_{2}, \boldsymbol{f}_{1}-\boldsymbol{f}_{2}\right)$	0	2	1	1	0	0	-1	-1
$\left(f_{3}+f_{4}, f_{3}-f_{4}, f_{5}+f_{6}, f_{5}-f_{6}\right)$	1	3	-1	1	-1	-1	1	1
Fourier transform $\hat{\boldsymbol{f}}$	4	-2	0	-2	-2	0	2	0
Walsh transform $=\mathbf{2}^{\boldsymbol{n}} \boldsymbol{\delta}_{0}-\mathbf{2} \hat{\boldsymbol{f}}$	0	4	0	4	4	0	-4	0

Some basic properties of the Walsh transform

Lemma:

$$
\sum_{x \in \mathrm{~F}_{2}^{n}}(-1)^{a \cdot x}= \begin{cases}2^{n} & \text { if } a=0 \\ 0 & \text { otherwise }\end{cases}
$$

Proposition. The Walsh transform is an involution (up to a multiplicative constant).

$$
\begin{aligned}
\sum_{a \in \mathrm{~F}_{2}^{n}} \mathcal{F}\left(f+\varphi_{a}\right)(-1)^{a \cdot x} & =\sum_{u \in \mathrm{~F}_{2}^{n}} \sum_{a \in \mathrm{~F}_{2}^{n}}(-1)^{f(u)+a \cdot u+a \cdot x} \\
& =\sum_{u \in \mathrm{~F}_{2}^{n}}(-1)^{f(u)} \sum_{a \in \mathrm{~F}_{2}^{n}}(-1)^{a \cdot(x+u)} \\
& =2^{n}(-1)^{f(x)}
\end{aligned}
$$

Parseval equality.

$$
\sum_{a \in \mathrm{~F}_{2}^{n}} \mathcal{F}^{2}\left(f+\varphi_{a}\right)=2^{2 n}
$$

Divisibility of the Walsh coefficients

Proposition.
For any $a \in \mathrm{~F}_{2}^{n}$,

$$
\mathcal{F}\left(f+\varphi_{a}\right) \equiv \mathcal{F}(f) \bmod 2^{\left\lceil\frac{n}{\operatorname{deg} f}\right\rceil+1}
$$

In particular,

$$
\begin{aligned}
\mathcal{F}\left(f+\varphi_{a}\right) & \equiv 2 \bmod 4 \text { if } \operatorname{deg} f=n \\
& \equiv 0 \bmod 4 \text { if } \operatorname{deg} f<n
\end{aligned}
$$

Nonlinearity of a Boolean function

Nonlinearity of $f: \mathrm{F}_{2}^{n} \rightarrow \mathrm{~F}_{2}$:
Hamming distance of f to $R M(1, n)=\left\{\varphi_{a}+\varepsilon, a \in \mathrm{~F}_{2}^{n}, \varepsilon \in \mathrm{~F}_{2}\right\}$.

$$
2^{n-1}-\frac{1}{2} \mathcal{L}(f) \quad \text { where } \mathcal{L}(f)=\max _{a}\left|\mathcal{F}\left(f+\varphi_{a}\right)\right|
$$

Generalization of Siegenthaler's attack

where \boldsymbol{g} is an \boldsymbol{r}-variable function such that

$$
p_{g}=\operatorname{Pr}\left[\boldsymbol{f}\left(x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{n}\right)=\boldsymbol{g}\left(x_{1}, \ldots, x_{r}\right)\right]>\frac{1}{2}
$$

Approximation of f by a function of fewer variables
[Zhang-Chan 00][C.-Trabbia 00][C. 02]

Proposition.

$$
\max _{g \in \mathcal{B} o o \ell_{r}}\left|p_{g}-\frac{1}{2}\right| \leq \frac{1}{2^{n+1}}\left(\sum_{\lambda \in \mathrm{F}_{2}^{r}} \mathcal{F}^{2}\left(f+\varphi_{\lambda, 0}\right)\right)^{1 / 2}
$$

In particular:

- For f balanced,

$$
p_{g}=\frac{1}{2} \text { for any } g \text { depending on } t \text { variables }
$$

if and only if f is t-resilient.

- The best approximation of a t-resilient function f by a function of $(t+1)$ variables is affine: $g=x_{i_{1}}+\ldots+x_{i_{t+1}}+\varepsilon$.
- $\max _{g}\left|p_{g}-\frac{1}{2}\right| \leq 2^{\frac{r}{2}-n-1} \mathcal{L}(f)$.

Generalization of Siegenthaler's attack

$$
\begin{aligned}
\operatorname{Pr}\left[s_{t} \neq \sigma_{t}\right]-\frac{1}{2} & \left.=\operatorname{Pr}\left[f\left(x_{1}, \ldots, x_{n}\right) \neq x_{1}+\ldots+x_{t+1}\right)\right]-\frac{1}{2} \\
& =\frac{1}{2^{n+1}} \mathcal{F}\left(f+\varphi_{v}\right)
\end{aligned}
$$

where v is the vector which equals 1 on its first $(t+1)$ coordinates.

Correlation attack on a filter generator

Let $a \in \mathbf{F}_{2}^{n}$ which minimizes

$$
p_{a}=\operatorname{Pr}\left[f\left(x_{1}, \ldots, x_{n}\right) \neq \varphi_{a}\right]=\operatorname{Pr}\left[s_{t} \neq \sigma_{t}\right]
$$

where $\sigma_{t}=\varphi_{a}\left(u_{t+\gamma_{1}}, \ldots, u_{t+\gamma_{n}}\right)$.
The sequence σ is produced by an LFSR with the same feedback polynomial but with initial state $\varphi_{a}\left(u_{t+\gamma_{1}}, \ldots, u_{t+\gamma_{n}}\right), \quad 0 \leq t<\boldsymbol{L}$.

Proposition.

$$
2^{\frac{n}{2}} \leq \min _{f \in \mathcal{B} \text { ool }_{n}} \mathcal{L}(f) \leq 2^{\frac{n+1}{2}}
$$

where the lower bound is tight if and only if \boldsymbol{n} is even and f is bent.
Some properties of bent functions. [Rothaus 76][Dillon 74]
Let \boldsymbol{f} be a bent function of \boldsymbol{n} variables.

- $\forall a \in \mathrm{~F}_{2}^{n}, \quad \mathcal{F}\left(f+\varphi_{a}\right)= \pm 2^{\frac{n}{2}}$. In particular, f is not balanced.
- $\operatorname{deg} f \leq \frac{n}{2}$.

Quadratic functions.
For n odd, $n=2 t+1$

$$
x_{1} x_{2}+x_{3} x_{4}+\ldots+x_{2 t-1} x_{2 t}+x_{2 t+1}
$$

satisfies $\mathcal{L}(f)=2^{\frac{n+1}{2}}$. Moreover, f is balanced and

$$
\forall a \in \mathbf{F}_{2}^{n}, \quad \mathcal{F}\left(f+\varphi_{a}\right) \in\left\{0, \pm 2^{\frac{n+1}{2}}\right\}
$$

Boolean functions with a high nonlinearity (2)

\boldsymbol{n}	$\boldsymbol{\operatorname { m i n }}_{\boldsymbol{f} \in \mathcal{B o o l}_{\boldsymbol{n}} \mathcal{L}(\boldsymbol{f})}$	
5	8	[Berlekamp-Welch 72]
7	16	[Mykkelveit 80]
9	$24,26,28,30$	[Kavut-Maitra-Yücel 06]
11	$46-60$	
13	$92-120$	
15	$182-216$	[Paterson-Wiedemann 83]

Open problem. Find the highest possible nonlinearity for a Boolean function of \boldsymbol{n} variables, where \boldsymbol{n} is odd and $\boldsymbol{n} \geq \mathbf{9}$. (Covering radius of $R M(1, n)$)

Balanced Boolean functions with a high nonlinearity

Proposition. [Dobbertin 94]

For balanced functions \boldsymbol{f} of \boldsymbol{n} variables, \boldsymbol{n} even,

$$
2^{\frac{n}{2}}+4 \leq \min _{f \in \mathcal{B} a \ell_{n}} \mathcal{L}(f) \leq 2^{\frac{n}{2}}+\min _{g \in \mathcal{B} a \ell_{\frac{n}{2}}} \mathcal{L}(g)
$$

\boldsymbol{n}	$\min _{\boldsymbol{f} \in \mathcal{B a} \ell_{n}} \mathcal{L}(\boldsymbol{f})$
4	8
5	8
6	12
7	16
8	20,24
9	$24,28,32$
10	36,40

Open problem. Find the highest possible nonlinearity for a balanced Boolean function of n variables, where n is even and $n \geq 8$.

Algebraic attacks and related criteria

Stream cipher with a linear transition function

Algebraic attacks [Courtois-Meier 03]
Let $A N(f)=\left\{g, g(x) f(x)=0\right.$ for all $\left.x \in \mathrm{~F}_{2}^{n}\right\}$.
Let $g \in A N(f)$, i.e., such that $g(x) f(x)=0$ for all x.

$$
\begin{gathered}
g\left(x_{t}\right) f\left(x_{t}\right)=g\left(x_{t}\right) s_{t}=0 \\
\Longrightarrow g \circ \mathcal{L}^{t}\left(x_{0}\right)=0 \text { if } s_{t}=1 .
\end{gathered}
$$

Let $h \in A N(1+f)$, i.e, such that $h(x)(1+f(x))=0$ for all $x \in \mathbf{F}_{2}^{\boldsymbol{n}}$.

$$
\begin{gathered}
h\left(x_{t}\right)\left(1+f\left(x_{t}\right)\right)=h\left(x_{t}\right)\left(1+s_{t}\right)=0 \\
\Longrightarrow h \circ \mathcal{L}^{t}\left(x_{0}\right)=0 \text { if } s_{t}=0 .
\end{gathered}
$$

Algebraic system with L variables of degree

$$
d=\min \{\operatorname{deg}(g), g \in A N(f) \cup A N(1+f), g \neq 0\}
$$

Complexity of the attack

$$
\begin{aligned}
& A I(f)=\text { algebraic immunity of the filtering function } f \\
& A I(f)=\min \{\operatorname{deg}(\boldsymbol{g}), \boldsymbol{g} \in \boldsymbol{A} \boldsymbol{N}(\boldsymbol{f}) \cup \boldsymbol{A N}(\mathbf{1}+\boldsymbol{f}), \boldsymbol{g} \neq \mathbf{0}\}
\end{aligned}
$$

Required number of keystream bits:

$$
N \geq \frac{2 L^{A I(f)}}{A I(f)!\left(A_{0}^{A I(f)}+A_{1}^{A I(f)}\right)}
$$

Number of operations:

$$
\left(\sum_{i=0}^{A I(f)}\binom{L}{i}\right)^{\omega} \simeq L^{A I(f) \omega} \text { where } \omega \simeq 2.37
$$

Existence of $g \in A N(f)$ with $\operatorname{deg} g \leq d$

$$
\operatorname{dim}\{g \in A N(f), \operatorname{deg} g \leq d\}=\sum_{i=0}^{d}\binom{n}{i}-\operatorname{rank}\left(R M^{f}(d, n)\right)
$$

Proposition. There exists $g \neq 0$ in $A N(f)$ with $\operatorname{deg} g \leq d$ if

$$
w t(f)<\sum_{i=0}^{d}\binom{n}{i}
$$

Bounds on the algebraic immunity [Courtois-Meier 03][Dalai-Gupta-Maitra 04]

Proposition.

Let \boldsymbol{f} be a Boolean function of \boldsymbol{n} variables. If $\boldsymbol{A I}(\boldsymbol{f}) \geq \boldsymbol{d}$, then

$$
\sum_{i=0}^{d}\binom{n}{i} \leq w t(f) \leq 2^{n}-\sum_{i=0}^{d}\binom{n}{i}
$$

Corollary. For any \boldsymbol{f} of \boldsymbol{n} variables,

$$
A I(f) \leq\left\lceil\frac{n}{2}\right\rceil
$$

Moreover, if f has optimal AI, then

- if n is odd, $w t(f)=2^{n-1}$
- if \boldsymbol{n} is even,

$$
2^{n-1}-\frac{1}{2}\binom{n}{n / 2} \leq w t(f) \leq 2^{n-1}+\frac{1}{2}\binom{n}{n / 2}
$$

Algebraic immunity and nonlinearity [Dalai-Gupta-Maitra 04]

Proposition. Let f be a function of n variables. If f has algebraic immunity at least d, then

$$
\mathcal{N} \mathcal{L}(f) \geq \sum_{i=0}^{d-2}\binom{n}{i}
$$

Most notably, if f has optimal algebraic immunity, then

$$
\mathcal{N} \mathcal{L}(f) \geq \begin{cases}2^{n-1}-\binom{n}{2} & \text { if } n \text { is odd } \\ 2^{n-1}-\frac{1}{2}\left(\frac{n}{2}\right)-\left(\frac{n}{2}-1\right) & \text { if } n \text { is even }\end{cases}
$$

The converse does not hold! (e.g. bent functions of degree 2).

Some practical constructions

Symmetric functions [C.-Videau05]

Definition. A Boolean function is symmetric if its output is invariant under any permutation of its inputs. \Longleftrightarrow The output only depends on the Hamming weight of the input vector.

Implementation.

- A symmetric function of \boldsymbol{n} variables can be represented by a vector of $(n+1)$ bits.
- complexity: $\mathcal{O}(n)$.

Related problems.

- Only a few balanced functions (except those having linear structures).
- Highly nonlinear functions are (close to) quadratic functions.

Components of power functions

$$
S_{\lambda}: x \longmapsto \operatorname{Tr}\left(\lambda x^{s}\right) \text { over } \mathrm{F}_{2^{n}}, \quad \lambda \in \mathrm{~F}_{2^{n}}^{*}
$$

Proposition. The Hamming weight of S_{λ} is divisible by $\operatorname{gcd}\left(s, 2^{n}-1\right)$. In particular:

- $\boldsymbol{S}_{\boldsymbol{\lambda}}$ is balanced if and only if $\operatorname{gcd}\left(s, 2^{n}-1\right)=1$.
- If $\boldsymbol{S}_{\boldsymbol{\lambda}}$ is bent, then $\operatorname{gcd}\left(s, 2^{n}-\underset{n}{1}\right)>1$ and s is coprime either with $\left(2^{\frac{n}{2}}-1\right)$ or with $\left(2^{\frac{n}{2}}+1\right)$.

Balanced components of power functions

- For odd n :

$$
\mathcal{L}\left(S_{\lambda}\right) \geq 2^{\frac{n+1}{2}}
$$

with equality for almost bent (AB) functions [Chabaud-Vaudenay94].

- For even \boldsymbol{n} : it is conjectured that

$$
\mathcal{L}\left(S_{\lambda}\right) \geq 2^{\frac{n}{2}+1}
$$

Known AB power functions $S: x \mapsto x^{s}$ over $\mathbf{F}_{2^{n}}$ with $n=2 t+1$

	exponents s	
quadratic	$2^{i}+\mathbf{1}$ with $\operatorname{gcd}(\boldsymbol{i}, \boldsymbol{n})=\mathbf{1}$,	[Gold 68], [Nyberg 93]
	$\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{t}$	
Kasami	$2^{2 \boldsymbol{i}}-\mathbf{2}^{\boldsymbol{i}}+\mathbf{1}$ with $\operatorname{gcd}(\boldsymbol{i}, \boldsymbol{n})=\mathbf{1}$	
	$\mathbf{2} \leq \boldsymbol{i} \leq \boldsymbol{t}$	[Kasami 71]
Welch	$\mathbf{2}^{\boldsymbol{t}}+\mathbf{3}$	[Dobbertin 98]
		[C.-Charpin-Dobbertin 00]
Niho	$\mathbf{2}^{\boldsymbol{t}}+\mathbf{2}^{\frac{t}{2}}-\mathbf{1}$ if \boldsymbol{t} is even	[Dobbertin 98]
	$\mathbf{2}^{\boldsymbol{t}}+\mathbf{2}^{\frac{3 t+1}{2}}-\mathbf{1}$ if \boldsymbol{t} is odd	[Xiang-Hollmann 01]

Known power permutations $S: x \mapsto x^{s}$ over $\mathbf{F}_{2^{n}}, \boldsymbol{n}$ even, with the highest nonlinearity

$2^{i}+1, \operatorname{gcd}(i, n)=2$	$n \equiv 2 \bmod 4$	[Gold 68]
$2^{2 i}-2^{i}+1, \operatorname{gcd}(i, n)=2$	$n \equiv 2 \bmod 4$	[Kasami 71]
$\sum_{i=0}^{n / 2} 2^{i k}, \operatorname{gcd}(k, n)=1$	$n \equiv 0 \bmod 4$	[Dobbertin 98]
$2^{\frac{n}{2}}+2^{\frac{n+2}{4}}+1$	$n \equiv 2 \bmod 4$	[Cusick-Dobbertin 95]
$2^{\frac{n}{2}}+2^{\frac{n}{2}-1}+1$	$n \equiv 2 \bmod 4$	[Cusick-Dobbertin 95]
$2^{\frac{n}{2}}+2^{\frac{n}{4}}+1$	$n \equiv 4 \bmod 8$	[Dobbertin 98]
$2^{n-1}-1$		[Lachaud-Wolfmann 90]

Conclusions

Paradox for hardware-oriented ciphers:
Every Boolean function having a strong algebraic structure is weak. The implementation complexity of almost all \boldsymbol{n}-variable Boolean functions is greater than $2^{n} / n$.
\longrightarrow search for suboptimal functions regarding both the resistance to known attacks and the implementation complexity.

