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Basic properties of Boolean functions for
LFSR-based generators
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Boolean functions

De�nition. A Boolean function of n variables is a function from Fn
2

into F2.

Truth table of a Boolean function.
x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

Hamming weight of a Boolean function.

The Hamming weight of a Boolean function f , wt(f), is the Hamming
weight of its value vector.

A function of n variables is balanced if and only if wt(f) = 2n−1.
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where f is a balanced Boolean function of n variables.
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∀t ≥ 0, st = f(ut+γ1, ut+γ2, . . . , ut+γn)
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Algebraic normal form (ANF)

Monomials in F2[x1, . . . , xn]/(x2
1 + x1, . . . , x2

n + xn):

{
xu, u ∈ Fn

2

}
where xu =

n∏

i=1

x
ui
i .

Example: x1011 = x1x3x4.

Proposition.
Any Boolean function of n variables has a unique polynomial repre-
sentation in F2[x1, . . . , xn]/(x2

1 + x1, . . . , x2
n + xn):

f(x1, . . . , xn) =
∑

u∈Fn
2

auxu, au ∈ F2.

Moreover, the coe�cients of the ANF and the values of f satisfy:
au =

⊕

x¹u

f(x) and f(u) =
⊕

x¹u

ax,

where x ¹ y if and only if xi ≤ yi for all 1 ≤ i ≤ n.
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Computing the ANF

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

a000 = f(000) = 0

a100 = f(100) ⊕ f(000) = 1

a010 = f(010) ⊕ f(000) = 0

a110 = f(110) ⊕ f(010) ⊕ f(100) ⊕ f(000) = 1

a001 = f(001) ⊕ f(000) = 0

a101 = f(101) ⊕ f(001) ⊕ f(100) ⊕ f(000) = 0

a011 = f(011) ⊕ f(001) ⊕ f(010) ⊕ f(000) = 1

a111 =
⊕

x∈F3
2
f(x) = wt(f) mod 2 = 0

f = x1 + x1x2 + x2x3.
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Degree and linear complexity

De�nition.
The degree of a Boolean function is the degree of the largest mono-
mial in its ANF.

Proposition. The weight of an n-variable function f is odd if and
only if deg f = n.

Degree and linear complexity of the combination generator.
Proposition. [Rueppel - Sta�elbach 87]
For n LFSRs with primitive feedback polynomials and distinct lengths,
the linear complexity of the keystream sequence generated by the
combination of these LFSR by f is

Λ = f(L1, . . . , Ln)

where f is evaluated over integers.

Example: Ge�e generator (1973)
f(x1, x2, x3) = x1 + x1x2 + x2x3. =⇒ Λ = L1 + L1L2 + L2L3.
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Degree and linear complexity (2)

Degree and linear complexity of the �lter generator.

Proposition. [Key76, Rueppel 86]
The linear complexity Λ of the keystream sequence generated by an
LFSR of length L �ltered by f satis�es

Λ ≤
deg f∑

i=0

(
L

i

)
.

Moreover, if L is a large prime,

Λ ≥
(

L

deg f

)

for most �ltering functions.
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Degree and basic algebraic attacks

Communication Theory of Secrecy Systems (1949), page 711.

�Using functional notation we have for enciphering E = f(K, M).

Given (or assuming) M = m1, m2, . . . , ms and E = e1, e2, . . . , es, the
cryptanalyst can set up equations for the di�erent key elements k1, k2, . . . , kr

(namely the enciphering equations).

e1 = f1(m1, m2, . . . , ms; k1, . . . , kr)

e2 = f2(m1, m2, . . . , ms; k1, . . . , kr)
...

es = fs(m1, m2, . . . , ms; k1, . . . , kr)

All is known, we assume, except the ki. Each of these equations
should therefore be complex in the ki, and involve many of them.
Otherwise the enemy can solve the simple ones and then the more
complex ones by substitution.�
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Shannon's attack on LFSR-based stream ciphers

Set up the enciphering equations:





s0 = f(x0, . . . , xL−1)

s1 = f ◦ L(x0, . . . , xL−1)

st = f ◦ Lt(x0, . . . , xL−1)

System of equations with L variables of degree d = deg(f) .

=⇒ Solve the system by linearization
d∑

i=1

(
n

i

)
' Ld

d!
keystream bits

Time complexity: L3d operations .
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Other representations of Boolean functions
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Reed-Muller codes

De�nition. [Reed 54], [Muller54]
The Reed-Muller code of length 2n and order r, RM(r, n), is the
linear code formed by the value vectors of all Boolean functions of
n variables and degree at most r.

Proposition. RM(r, n) has minimum distance 2n−r.
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Complexity of a Boolean function [Wegener 87]

CΩ(f) = smallest number of gates of a circuit computing f , whose
gates belong to Ω.

Usually, Ω = B2, set of Boolean functions of 2 variables.

For Programmable Logic-Arrays, Ω = (∧, ∨, ¬).

Example.

• x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x3x4 + x3x5

+x4x5 � 19 gates.

• [(z + x4)(z + x5) + z] + [y(x1 + x3) + x1]

with z = y + x3 and y = x1 + x2 � 10 gates

The Shannon e�ect [Shannon 49], [Lupanov 70]
For all n ≥ 9, �almost all� Boolean functions of n variables have com-
plexity CB2

greater than 2n/n.
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Correlation attacks and related criteria
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Correlation attack [Siegenthaler 85]

target LFSR

target LFSR

correlation-

-

st
keystream

σt

where p = Pr[st 6= σt] 6= 1

2
.

Problem:
Recover the initial state of the target register from the knowledge of
some keystream bits.
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Correlation attack on a combination generator

LFSR 2

LFSR n

LFSR 1
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- correlation

with Pr[f(x1, . . . , xn) 6= xi] = P [st 6= σt] 6= 1

2
.
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Correlation-immune functions

Pr[f(X1, . . . , Xn) = 1|Xi = 1] = Pr[f(X1, . . . , Xn) = 1|Xi = 0] .

In terms of Hamming distance

x ∈ Fn
2 , xi = 0 x ∈ Fn

2 , xi = 1

f f1 f2

x 7→ xi 0 0 . . . 0 0 1 1 . . . 1 1

f + xi f1 f2 + 1

f correlation-immune: wt(f1) = wt(f2).

⇐⇒ d(f, xi) = wt(f1) + wt(f2 + 1) = wt(f1) + (2n−1 − wt(f2)) = 2n−1 .
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Correlation-immunity of order t [Siegenthaler 84]

De�nition. A Boolean function f of n variables is t-th order correlation-
immune if, for any subset T ⊂ {1, . . . , n}, |T | = t, for any a ∈ Ft

2,

Pr[f(X1, . . . , Xn) = 1|∀i ∈ T, Xi = ai] = Pr[f(X1, . . . , Xn) = 1] .

Proposition. [Xiao-Massey88]
f is t-th order correlation-immune if and only if
for all α ∈ Fn

2 with 1 ≤ wt(α) ≤ t, d(f, α · x) = 2n−1 .

De�nition. A t-resilient function is a balanced t-th order correlation-
immune function.

=⇒ The correlation-immunity order of a combining function must be
high.
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Degree of a correlation-immune function

Theorem. [Siegenthaler 84]
Let f be a Boolean function of n variables. Then, its correlation-
immunity order t satis�es

deg(f) + t ≤ n

Moreover, if f is balanced,

deg(f) + t ≤ n − 1
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Distance to a�ne functions
and Walsh transform
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Walsh transform of a Boolean function

Imbalance of a Boolean function.
For any Boolean function f of n variables

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f).

Linear functions of n variables.

ϕa : x 7−→ a · x

Walsh transform of a function f of n variables

Fn
2 −→ C

a 7−→ F(f + ϕa) =
∑

x∈Fn
2
(−1)f(x)+a·x
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Computing the Walsh transform

f 0 1 0 0 0 1 1 1
(f1 + f2, f1 − f2) 0 2 1 1 0 0 -1 -1

(f3 + f4, f3 − f4, f5 + f6, f5 − f6) 1 3 -1 1 -1 -1 1 1
Fourier transform f̂ 4 -2 0 -2 -2 0 2 0

Walsh transform = 2nδ0 − 2f̂ 0 4 0 4 4 0 -4 0
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Some basic properties of the Walsh transform

Lemma:
∑

x∈Fn
2

(−1)a·x =
{ 2n if a = 0

0 otherwise .

Proposition. The Walsh transform is an involution (up to a multi-
plicative constant).∑

a∈Fn
2

F(f + ϕa)(−1)a·x =
∑

u∈Fn
2

∑

a∈Fn
2

(−1)f(u)+a·u+a·x

=
∑

u∈Fn
2

(−1)f(u)
∑

a∈Fn
2

(−1)a·(x+u)

= 2n(−1)f(x)

Parseval equality. ∑

a∈Fn
2

F2(f + ϕa) = 22n.
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Divisibility of the Walsh coe�cients

Proposition.
For any a ∈ Fn

2 ,

F(f + ϕa) ≡ F(f) mod 2
d n
deg f e+1

.

In particular,

F(f + ϕa) ≡ 2 mod 4 if deg f = n

≡ 0 mod 4 if deg f < n.

25



Nonlinearity of a Boolean function

Nonlinearity of f : Fn
2 → F2:

Hamming distance of f to RM(1, n) = {ϕa + ε, a ∈ Fn
2 , ε ∈ F2}.

2n−1 − 1

2
L(f) where L(f) = max

a
|F(f + ϕa)| .
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Generalization of Siegenthaler's attack
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where g is an r-variable function such that

pg = Pr[f(x1, . . . , xr, xr+1, . . . , xn) = g(x1, . . . , xr)] >
1

2
.
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Approximation of f by a function of fewer variables
[Zhang-Chan 00][C.-Trabbia 00][C. 02]

Proposition.

max
g∈Boo`r

∣∣∣∣pg − 1

2

∣∣∣∣ ≤ 1

2n+1




∑

λ∈Fr
2

F2(f + ϕλ,0)




1/2

In particular:
• For f balanced,

pg =
1

2
for any g depending on t variables

if and only if f is t-resilient.

• The best approximation of a t-resilient function f by a function of
(t + 1) variables is a�ne: g = xi1 + . . . + xit+1

+ ε.

• maxg

∣∣∣pg − 1
2

∣∣∣ ≤ 2
r
2−n−1L(f).
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Generalization of Siegenthaler's attack

LFSR 2

LFSR n

LFSR 1

f

A
A
AAU-

¢
¢
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s

-correlation

equivalent LFSR-

-

σ

L = Li1 + . . . + Lit+1
¾ --

Pr[st 6= σt] − 1

2
= Pr[f(x1, . . . , xn) 6= x1 + . . . + xt+1)] − 1

2

=
1

2n+1
F(f + ϕv)

where v is the vector which equals 1 on its �rst (t + 1) coordinates.
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Correlation attack on a �lter generator

Let a ∈ Fn
2 which minimizes

pa = Pr[f(x1, . . . , xn) 6= ϕa] = Pr[st 6= σt]

where σt = ϕa(ut+γ1, . . . , ut+γn).

The sequence σ is produced by an LFSR with the same feedback
polynomial but with initial state ϕa(ut+γ1, . . . , ut+γn), 0 ≤ t < L.

- ut

©©©©©©©©©©
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Boolean functions with a high nonlinearity (1)

Proposition.

2
n
2 ≤ min

f∈Booln
L(f) ≤ 2

n+1
2

where the lower bound is tight if and only if n is even and f is bent.
Some properties of bent functions. [Rothaus 76][Dillon 74]
Let f be a bent function of n variables.

• ∀a ∈ Fn
2 , F(f + ϕa) = ±2

n
2 . In particular, f is not balanced.

• deg f ≤ n
2 .

Quadratic functions.
For n odd, n = 2t + 1

x1x2 + x3x4 + . . . + x2t−1x2t + x2t+1

satis�es L(f) = 2
n+1

2 . Moreover, f is balanced and

∀a ∈ Fn
2 , F(f + ϕa) ∈ {0, ±2

n+1
2 }.
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Boolean functions with a high nonlinearity (2)

n minf∈Booln L(f)

5 8 [Berlekamp-Welch 72]
7 16 [Mykkelveit 80]
9 24, 26, 28, 30 [Kavut-Maitra-Yücel 06]
11 46-60
13 92-120
15 182-216 [Paterson-Wiedemann 83]

Open problem. Find the highest possible nonlinearity for a Boolean
function of n variables, where n is odd and n ≥ 9.
(Covering radius of RM(1, n))
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Balanced Boolean functions with a high nonlinearity

Proposition. [Dobbertin 94]
For balanced functions f of n variables, n even,

2
n
2 + 4 ≤ min

f∈Ba`n

L(f) ≤ 2
n
2 + min

g∈Ba`n
2

L(g)

n minf∈Ba`n
L(f)

4 8
5 8
6 12
7 16
8 20, 24
9 24, 28, 32
10 36, 40

Open problem. Find the highest possible nonlinearity for a balanced
Boolean function of n variables, where n is even and n ≥ 8.

33



Algebraic attacks and related criteria

34



Stream cipher with a linear transition function
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Algebraic attacks [Courtois-Meier 03]

Let AN(f) = {g, g(x)f(x) = 0 for all x ∈ Fn
2}.

Let g ∈ AN(f), i.e., such that g(x)f(x) = 0 for all x.
g(xt)f(xt) = g(xt)st = 0

=⇒ g ◦ Lt(x0) = 0 if st = 1 .

Let h ∈ AN(1 + f), i.e, such that h(x)(1 + f(x)) = 0 for all x ∈ Fn
2 .

h(xt)(1 + f(xt)) = h(xt)(1 + st) = 0

=⇒ h ◦ Lt(x0) = 0 if st = 0 .

Algebraic system with L variables of degree
d = min{deg(g), g ∈ AN(f) ∪ AN(1 + f), g 6= 0} .
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Complexity of the attack

AI(f) = algebraic immunity of the �ltering function f

AI(f) = min{deg(g), g ∈ AN(f) ∪ AN(1 + f), g 6= 0}.
Required number of keystream bits:

N ≥ 2LAI(f)

AI(f)!(A
AI(f)
0 + A

AI(f)
1 )

Number of operations:



AI(f)∑

i=0

(
L

i

)


ω

' LAI(f)ω where ω ' 2.37
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Existence of g ∈ AN(f) with deg g ≤ d

x such that f(x) = 1 [wt(f)]

1

RMf(d, n)

all monomials of
degree ≤ d[∑d

i=0

(n
i

)]

x1
...

xn

x1x2
...

xn−1xn

dim{g ∈ AN(f), deg g ≤ d} =
d∑

i=0

(
n

i

)
− rank

(
RMf(d, n)

)
.

Proposition. There exists g 6= 0 in AN(f) with deg g ≤ d if

wt(f) <

d∑

i=0

(
n

i

)
.
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Bounds on the algebraic immunity
[Courtois-Meier 03][Dalai-Gupta-Maitra 04]

Proposition.
Let f be a Boolean function of n variables. If AI(f) ≥ d, then

d∑

i=0

(
n

i

)
≤ wt(f) ≤ 2n −

d∑

i=0

(
n

i

)

Corollary. For any f of n variables,

AI(f) ≤
⌈n

2

⌉
.

Moreover, if f has optimal AI, then

• if n is odd, wt(f) = 2n−1

• if n is even,

2n−1 − 1

2

(
n

n/2

)
≤ wt(f) ≤ 2n−1 +

1

2

(
n

n/2

)
.
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Algebraic immunity and nonlinearity [Dalai-Gupta-Maitra 04]

Proposition. Let f be a function of n variables. If f has algebraic
immunity at least d, then

NL(f) ≥
d−2∑

i=0

(
n

i

)
.

Most notably, if f has optimal algebraic immunity, then

NL(f) ≥




2n−1 − ( n
n−1

2

)
if n is odd

2n−1 − 1
2

(n
n
2

) − ( n
n
2−1

)
if n is even

The converse does not hold! (e.g. bent functions of degree 2).
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Some practical constructions
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Symmetric functions [C.-Videau05]

De�nition. A Boolean function is symmetric if its output is invariant
under any permutation of its inputs.
⇐⇒ The output only depends on the Hamming weight of the input
vector.

Implementation.

• A symmetric function of n variables can be represented by a vector
of (n + 1) bits.

• complexity: O(n).

Related problems.

• Only a few balanced functions (except those having linear struc-
tures).

• Highly nonlinear functions are (close to) quadratic functions.
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Components of power functions

linearxs
n bits

Sλ : x 7−→ Tr(λxs) over F2n, λ ∈ F∗
2n

Proposition. The Hamming weight of Sλ is divisible by gcd(s, 2n − 1).
In particular:

• Sλ is balanced if and only if gcd(s, 2n − 1) = 1.

• If Sλ is bent, then gcd(s, 2n − 1) > 1

and s is coprime either with (2
n
2 − 1) or with (2

n
2 + 1).
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Balanced components of power functions

• For odd n:
L(Sλ) ≥ 2

n+1
2

with equality for almost bent (AB) functions [Chabaud-Vaudenay94].

• For even n: it is conjectured that

L(Sλ) ≥ 2
n
2+1

44



Known AB power functions S : x 7→ xs over F2n with n = 2t + 1

exponents s

quadratic 2i + 1 with gcd(i, n) = 1, [Gold 68],[Nyberg 93]
1 ≤ i ≤ t

Kasami 22i − 2i + 1 with gcd(i, n) = 1 [Kasami 71]
2 ≤ i ≤ t

Welch 2t + 3 [Dobbertin 98]
[C.-Charpin-Dobbertin 00]

Niho 2t + 2
t
2 − 1 if t is even [Dobbertin 98]

2t + 2
3t+1

2 − 1 if t is odd [Xiang-Hollmann 01]

45



Known power permutations S : x 7→ xs over F2n, n even,
with the highest nonlinearity

2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Gold 68]
22i − 2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Kasami 71]
∑n/2

i=0 2ik, gcd(k, n) = 1 n ≡ 0 mod 4 [Dobbertin 98]
2

n
2 + 2

n+2
4 + 1 n ≡ 2 mod 4 [Cusick-Dobbertin 95]

2
n
2 + 2

n
2−1 + 1 n ≡ 2 mod 4 [Cusick-Dobbertin 95]

2
n
2 + 2

n
4 + 1 n ≡ 4 mod 8 [Dobbertin 98]

2n−1 − 1 [Lachaud-Wolfmann 90]
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Conclusions

Paradox for hardware-oriented ciphers:
Every Boolean function having a strong algebraic structure is weak.
The implementation complexity of almost all n-variable Boolean func-
tions is greater than 2n/n.

−→ search for suboptimal functions regarding both the resistance to
known attacks and the implementation complexity.
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