Gröbner Bases in Public-Key Cryptography

Ludovic Perret

SPIRAL/SALSA LIP6, Université Paris 6 INRIA ludovic.perret@lip6.fr

ECRYPT PhD SUMMER SCHOOL Emerging Topics in Cryptographic Design and Cryptanalysis

Gröbner Bases in Cryptography?

C.E. Shannon

"Breaking a good cipher should require as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type."

Communication Theory of Secrecy Systems, 1949.

Algebraic Cryptanalysis

Principle

- Convert a cryptosystem into an algebraic set of equations
- Try to solve this system
 - ⇒ Gröbner bases

Why Using Gröbner Bases?

- Based on an elegant and rich mathematical theory
 - ⇒ Buchberger's talk
- Most efficient method for solving algebraic systems
- Efficient implementations available
 - Buchberger's algorithm (Singular, Gb, ...)
 - F₄ algorithm (Magma, Maple 10, Fgb, ...)

Efficient Algebraic Cryptanalysis?

- Convert a cryptosystem into an algebraic set of equations a particular attention to the way of constructing the system exploit all the properties of the cryptosystem
- Try to solve the simplified system

Efficient Algebraic Cryptanalysis?

- Convert a cryptosystem into an algebraic set of equations a particular attention to the way of constructing the system exploit all the properties of the cryptosystem
- Try to solve the simplified system
 - → Minimize the number of variables/degree
 - ⇒ Maximize the number of equations

Efficient Algebraic Cryptanalysis?

- Convert a cryptosystem into an algebraic set of equations a particular attention to the way of constructing the system exploit all the properties of the cryptosystem
- Simplify the system
- Try to solve the simplified system
 - → Minimize the number of variables/degree
 - ⇒ Maximize the number of equations

Algebraic Cryptanalysis in Practice

- Block Ciphers (⇒ Cid's talk)
- Stream Ciphers (⇒Johansson/Canteaut 's talk & Cid's talk)

Outline

- Algebraic Cryptanalysis of HFE
- Isomorphism of Polynomials (IP)
 - Description of the Problem
 - An Algorithm for Solving IP
- The Functional Decomposition Problem
 - 2R/2R⁻ and FDP
 - Solving FDP
- Conclusion

The HFE scheme

[J. Patarin, Eurocrypt 1996]

Secret key:

•
$$(S, U) \in GL_n(\mathbb{K}) \times GL_n(\mathbb{K})$$

•
$$A = \sum_{i,j} \beta_{i,j} X^{q^{\theta_{i,j}} + q^{\theta'_{i,j}}} \in \mathbb{K}'[X]$$
, with $\mathbb{K}' \supset \mathbb{K}$, $q = Char(\mathbb{K})$

•
$$\mathbf{a} = (a_1(x_1, \dots, x_n), \dots, a_n(x_1, \dots, x_n)) \in \mathbb{K}[x_1, \dots, x_n]^u$$

Public key:

$$(b_1(\mathbf{x}),\ldots,b_n(\mathbf{x}))=(a_1(\mathbf{x}S),\ldots,a_n(\mathbf{x}S))U,$$

with
$$\mathbf{x} = (x_1, ..., x_n)$$
.

Encryption: To enc.
$$\mathbf{m} \in \mathbb{K}^n$$
, $\mathbf{c} = (b_1(\mathbf{m}), \dots, b_n(\mathbf{m}))$.

Signature: To sig. $\mathbf{m} \in \mathbb{K}^n$, find $\mathbf{s} \in \mathbb{K}^n$ s.t. $\mathbf{b}(\mathbf{s}) = \mathbf{m}$.

Message Recovery Attack – (I)

Given
$$\mathbf{c} = (b_1(\mathbf{m}), \dots, b_n(\mathbf{m})) \in \mathbb{K}^n$$
. Find $\mathbf{z} \in \mathbb{K}^n$, such that :

$$b_1(\mathbf{z}) - c_1 = 0, \dots, b_n(\mathbf{z}) - c_n = 0.$$

In Theory ...

- PoSSo is NP-Hard
- Complexity of F_5 for *semi-reg. sys.* : $\mathcal{O}(n^{\omega \cdot d_{reg}})$, with :

$$\textit{d}_{\textit{reg}} \sim \left(-\alpha + \frac{1}{2} + \frac{1}{2} \sqrt{2\alpha^2 - 10\alpha - 1 + 2(\alpha + 2)\sqrt{\alpha(\alpha + 2)}} \right) \textit{n},$$

 \Rightarrow For a quadratic system of 80 variables : $d_{reg} = 11$.

$$\approx 2^{83}$$

Message Recovery Attack – (II)

In Practice ...

Complexity of F_5 : $2^{O(\log(n)^2)}$.

J.-C. Faugère, A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems using Gröbner Bases. CRYPTO 2003.

L. Granboulan, A. Joux, J. Stern. Inverting HFE is Quasipolynomial. CRYPTO 2006.

Outline

- Algebraic Cryptanalysis of HFE
- 2 Isomorphism of Polynomials (IP)
 - Description of the Problem
 - An Algorithm for Solving IP
- The Functional Decomposition Problem
 - 2R/2R⁻ and FDP
 - Solving FDP
- 4 Conclusion

"Key Recovery Attack"

2PLE

Given: $\mathbf{a} = (a_1, ..., a_u), \text{ and } \mathbf{b} = (b_1, ..., b_u) \in \mathbb{K}[x_1, ..., x_n]^u.$

Question : Find $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, s. t. :

$$(b_1(\mathbf{x}),\ldots,b_n(\mathbf{x}))=(a_1(\mathbf{x}S),\ldots,a_n(\mathbf{x}S))U,$$

denoted by $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x}S)U$, with $\mathbf{x} = (x_1, \dots, x_n)$.

J. Patarin.

Hidden Fields Equations (HFE) and Isomorphism of Polynomials (IP): two new families of Asymmetric Algorithms.

EUROCRYPT 1996.

A Basic Problem – (I)

- HFE and related schemes (C*, SFLASH, ...)
 - ullet $A=X^{1+q^{\theta}}\in\mathbb{K}'[X], \text{ with } \mathbb{K}'\supset\mathbb{K}, \text{ and } q=Char(\mathbb{K})$
- signature/authentication schemes
 - J. Patarin.

Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of Asymmetric Algorithms.

EUROCRYPT 1996.

- Traitor Tracing schemes
 - O. Billet, H. Gilbert.

 A Traceable Block Cipher.

 ASIACRYPT 2003.

A Basic Problem – (II)

Code Equivalence (CE)

Given : two matrices G_1 , and $G_2 \in \mathcal{M}_{k,n}(\mathbb{F}_q)$.

Find: – if any – $S \in GL_k(\mathbb{F}_q)$, and a permutation $\sigma \in S_n$, s.t.:

$$G_2 = SG_1P_{\sigma}$$

where:

$$\begin{cases} (P_{\sigma})_{i,j} = 1, & \text{if } \sigma(i) = j, \text{ and} \\ (P_{\sigma})_{i,j} = 0, & \text{otherwise.} \end{cases}$$

A Basic Problem - cont'd

McEliece's Cryptosystem (1978)

Secret key : $S \in GL_k(\mathbb{F}_2)$, a permutation σ on $\{1, \ldots, n\}$.

Public data : $G \in \mathcal{M}_{k,n}(\mathbb{F}_2)$

Public key:

$$G' = SGP_{\sigma},$$

where:

$$\begin{cases} (P_{\sigma})_{i,j} = 1, & \text{if } \sigma(i) = j, \text{ and} \\ (P_{\sigma})_{i,j} = 0, & \text{otherwise.} \end{cases}$$

Encryption: To encrypt $\underline{m} \in \mathbb{F}_2^k$, compute:

$$\underline{c} = \underline{m}G' + \underline{e},$$

with $\underline{e} \in \mathbb{F}_2^n$, s.t. $w_H(e) = t$.

A Basic Problem - cont'd

Graph Isomorphism Problem

Given : $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$

Question : Find – if any – a bijection $p: V_1 \rightarrow V_2$, such that:

 $(i,j) \in E_1$ if, and only if, $(p(i), p(j)) \in E_2$.

Hard Problems?

N. Sendrier.

Finding the permutation between equivalent codes: the Support Splitting Algorithm.

IEEE Transactions on Information Theory, July 2000.

颴 L. Babai.

Automorphism groups, isomorphism, reconstruction. Handbook of combinatorics.

Outline

- Algebraic Cryptanalysis of HFE
- Isomorphism of Polynomials (IP)
 - Description of the Problem
 - An Algorithm for Solving IP
- The Functional Decomposition Problem
 - 2R/2R⁻ and FDP
 - Solving FDP
- 4 Conclusion

Basic Idea – (I)

Fact

Suppose that $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x}S)U$, for $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$. For each $i, 1 \leq i \leq u$, there exist $E_i \subset \mathbb{K}^n$, and p_{α_i} s. t. :

$$\left(\mathbf{b}(\mathbf{x})\boldsymbol{\mathit{U}}^{-1}-\mathbf{a}(\mathbf{x}\boldsymbol{\mathit{S}})\right)_{\boldsymbol{\mathit{i}}} = \sum_{\alpha_{\boldsymbol{\mathit{i}}}=(\alpha_{\boldsymbol{\mathit{i}},1},\ldots,\alpha_{\boldsymbol{\mathit{i}},n})\in E_{\boldsymbol{\mathit{i}}}} p_{\alpha_{\boldsymbol{\mathit{i}}}}(\boldsymbol{\mathit{S}},\boldsymbol{\mathit{U}}^{-1})x_{1}^{\alpha_{\boldsymbol{\mathit{i}},1}}\cdots x_{n}^{\alpha_{\boldsymbol{\mathit{i}},n}},$$

where
$$p_{\alpha_i}(S, U^{-1}) = p_{\alpha_i}(s_{1,1}, \dots, s_{n,n}, u'_{1,1}, \dots, u'_{u,u}).$$

J.-C. Faugère, L. P.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects.

EUROCRYPT 2006.

Basic Idea - (II)

Remark

If $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x}S)U$, for some $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, then for all $i, 1 \le i \le u : (\mathbf{b}(\mathbf{x})U^{-1} - \mathbf{a}(\mathbf{x}S))_i =$

$$\sum_{\alpha_i=(\alpha_{i,1},\ldots,\alpha_{i,n})\in E_i} p_{\alpha_i}(S,\textbf{\textit{U}}^{-1})\textbf{\textit{x}}_1^{\alpha_{i,1}}\cdots\textbf{\textit{x}}_n^{\alpha_{i,n}}=0.$$

Thus, for all $i, 1 \le i \le u$, and for all $\alpha_i \in E_i$:

$$p_{\alpha_i}(S, U^{-1}) = 0.$$

Basic Idea - (III)

Lemma

Let
$$\mathcal{I} = \langle p\alpha_i, \forall i, 1 \leq i \leq u, \text{ and } \forall \alpha_i \in E_i \rangle$$
, and :

$$V(\mathcal{I}) = \{ \mathbf{s} \in \mathbb{K}^{n^2 + u^2} : p\alpha_i(\mathbf{s}) = 0, \forall 1 \leq i \leq u, \text{ and } \forall \alpha_i \in E_i \}.$$

If
$$\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x}S)U$$
, for some $(S,U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, then :

$$(\phi_1(S), \phi_2(U^{-1})) \in V(\mathcal{I}),$$

with:

$$\phi_1: \mathbf{S} = \{\mathbf{s}_{i,j}\}_{1 \leq i,j \leq n} \mapsto (\mathbf{s}_{1,1}, \dots, \mathbf{s}_{1,n}, \dots, \mathbf{s}_{n,1}, \dots, \mathbf{s}_{n,n}),
\phi_2: \mathbf{U}^{-1} = \{\mathbf{u}'_{i,j}\}_{1 \leq i,j \leq u} \mapsto (\mathbf{u}'_{1,1}, \dots, \mathbf{u}'_{1,u}, \dots, \mathbf{u}'_{u,1}, \dots, \mathbf{u}'_{u,u}).$$

A Structural Property

Lemma

Let ${\color{red} d}$ be a positive integer, and ${\mathcal I}_{{\color{red} d}} \subset {\mathbb F}_q[{\color{red} y},{\color{red} z}]$ be the ideal generated by the polynomials $p\alpha_i$ of maximal total degree smaller than ${\color{red} d}$. Let also $V({\mathcal I}_{{\color{red} d}})$ be the variety associated to ${\mathcal I}_{{\color{red} d}}$. If ${\color{red} b}({\color{red} x}) = {\color{red} a}({\color{red} x}S){\color{red} U}$, for some $({\color{red} S},{\color{red} U}) \in GL_n({\mathbb K}) \times GL_u({\mathbb K})$, then :

$$(\phi_1(S), \phi_2(U^{-1})) \in V(\mathcal{I}_d)$$
, for all $d, 0 \le d \le D$,

with:

$$\phi_1: \mathbf{S} = \{s_{i,j}\}_{1 \leq i,j \leq n} \mapsto (s_{1,1}, \dots, s_{1,n}, \dots, s_{n,1}, \dots, s_{n,n}), \text{ and } \phi_2: \mathbf{U}^{-1} = \{u'_{i,j}\}_{1 \leq i,j \leq u} \mapsto (u'_{1,1}, \dots, u'_{1,u}, \dots, u'_{u,1}, \dots, u'_{u,u}).$$

The 2PLE algorithm

Input:
$$(\mathbf{a}, \mathbf{b}) \in \mathbb{K}[x_1, \dots, x_n]^u \times \mathbb{K}[x_1, \dots, x_n]^u$$

Output: $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, s.t. $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x}S)U$

Let
$$d_0 = \min\{d > 1 : \mathbf{a}^{(d)} \neq \mathbf{0_u}\}$$

- Construct the $p\alpha_i s$ of max. total degree smaller than d_0
- Set

$$\mathcal{I}_{d_0} = \langle p\alpha_i, \forall i, 1 \leq i \leq u, \text{ and } \forall \alpha_i \in E_i : \deg(p\alpha_i) \leq d_0 \rangle.$$

- Compute $V(\mathcal{I}_{d_0})$
- Find a solution of 2PLE among the elements of $V(\mathcal{I}_{d_0})$
- Return this solution

Summary

We solve algebraic systems of :

- $O(u \cdot n^{d_0})$ equations of degree at most d_0
 - $d_0 = 2$ in practice
- $n^2 + u^2$ unknowns

Experimental Results – Random instances

$$u = n$$
, $deg = 2$

n	#unk.	q	T _{Gen}	T_{F_5}	T_{F_4/F_5}	T	$q^{n/2}$
8	128	2 ¹⁶	0.3s.	0.1s.	6	0.4s.	2 ⁶⁴
15	450	2 ¹⁶	48s.	10s.	23	58s.	2 ¹²⁰
17	578	2 ¹⁶	137.2s.	27.9s.	31	195.1s.	2 ¹³⁶
20	800	2 ¹⁶	569.1s.	91.5s.	41	660.6s.	2 ¹⁶⁰
15	450	65521	35.5s.	8s.	23	43.5s.	2 ¹²⁰
20	800	65521	434.9s.	69.9s.	41	504.8s.	2 ¹⁶⁰
23	1058	65521	1578.6s.	235.9s.		1814s.	2 ¹⁸⁴

N. Courtois, L. Goubin, J. Patarin. *Improved Algorithms for Isomorphism of Polynomials.*EUROCRYPT 1998.

Experimental Results – C* Instances

u = n

n	#unk.	q	deg	T_{Gen}	T_{F_5}	Τ	q^n
5	50	2 ¹⁶	4	0.2s.	0.13s.	0.33s.	2 ⁸⁰
6	72	2 ¹⁶	4	0.7s.	1s.	1.7s.	2 ⁹⁶
7	98	2 ¹⁶	4	1.5s.	6.1s.	7.6s.	2 ¹¹²
8	128	2 ¹⁶	4	3.8s.	54.3s.	58.1s.	2 ¹²⁸
9	162	2 ¹⁶	4	5.4s.	79.8s.	85.2s.	2 ¹⁴⁴
10	200	2 ¹⁶	4	12.9s.	532.3s.	545.2s.	2 ¹⁶⁰

Outline

- Algebraic Cryptanalysis of HFE
- Isomorphism of Polynomials (IP)
 - Description of the Problem
 - An Algorithm for Solving IP
- The Functional Decomposition Problem
 - 2R/2R⁻ and FDP
 - Solving FDP
- 4 Conclusion

The HFE scheme

[J. Patarin, Eurocrypt 1996]

Secret key:

- $(S, U) \in GL_n(\mathbb{K}) \times GL_n(\mathbb{K})$
- $A = \sum_{i,j} \beta_{i,j} X^{q^{\theta_{i,j}} + q^{\theta'_{i,j}}} \in \mathbb{K}'[X]$, with $\mathbb{K}' \supset \mathbb{K}$, $q = Char(\mathbb{K})$
- $\mathbf{a} = (a_1(x_1, \dots, x_n), \dots, a_n(x_1, \dots, x_n)) \in \mathbb{K}[x_1, \dots, x_n]^u$

Public key:

$$(b_1(\mathbf{x}),\ldots,b_n(\mathbf{x}))=(a_1(\mathbf{x}S),\ldots,a_n(\mathbf{x}S))U,$$

with
$$\mathbf{x} = (x_1, ..., x_n)$$
.

Encryption: To enc. $\mathbf{m} \in \mathbb{K}^n$, $\mathbf{c} = (b_1(\mathbf{m}), \dots, b_n(\mathbf{m}))$.

Signature: To sig. $\mathbf{m} \in \mathbb{K}^n$, find $\mathbf{s} \in \mathbb{K}^n$ s.t. $\mathbf{b}(\mathbf{s}) = \mathbf{m}$.

2R/2R⁻ schemes

SK:

- Three affine bijections $r, s, t : \mathbb{K}^n \to \mathbb{K}^n$
- Two applications $\psi, \phi : \mathbb{K}^n \to \mathbb{K}^n$

PK:
$$h_1, \ldots, h_u, \ldots, h_n \in \mathbb{K}[x_1, \ldots, x_n]$$
 describing :

$$\mathbf{h} = \underbrace{t \circ \psi \circ s}_{\mathbf{f}} \circ \underbrace{\phi \circ r}_{\mathbf{g}}, \mathbb{K}^n \to \mathbb{K}^n.$$

2R schemes: some polynomials of the PK are removed

Functional Decomposition Problem

FDP

Input :
$$h = (h_1, ..., h_u) \in \mathbb{K}[x_1, ..., x_n]^u$$
. Find :

$$\bullet$$
 $\mathbf{f} = (f_1, \dots, f_u) \neq h \in \mathbb{K}[x_1, \dots, x_n]^u$, and

$$\bullet \ \mathbf{g} = (g_1, \dots, g_n) \in \mathbb{K}[x_1, \dots, x_n]^n,$$

such that:

$$\mathbf{h} = (\mathbf{f} \circ \mathbf{g}) = (f_1(g_1, \dots, g_n), \dots, f_u(g_1, \dots, g_n)).$$

Related works

D.F. Ye, Z.D. Dai, K.Y. Lam. (*u* = *n*)

Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions.

Journal of Cryptology, 2001.

Related works

- J. von zur Gathen, J. Gutierrez, R. Rubio *Multivariate Polynomial Decomposition.*Applicable Algebra in Engineering, Communication and Computing, 2004.
- D.F. Ye, Z.D. Dai, K.Y. Lam. (*u* = *n*)

 Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions.

 Journal of Cryptology, 2001.
- E. Biham.

 Cryptanalysis of Patarin's 2-Round Public Key System with S-Boxes (2R).

 CRYPTO 2000.

Outline

- Algebraic Cryptanalysis of HFE
- Isomorphism of Polynomials (IP)
 - Description of the Problem
 - An Algorithm for Solving IP
- The Functional Decomposition Problem
 - 2R/2R⁻ and FDP
 - Solving FDP
- Conclusion

Preliminary Remarks – (I)

FDP

Find
$$\mathbf{f} = (f_1, \dots, f_u) : \mathbb{K}^n \to \mathbb{K}^u, \mathbf{g} = (g_1, \dots, g_n) : \mathbb{K}^n \to \mathbb{K}^n$$
, s. t.
$$\mathbf{h} = (h_1, \dots, h_u) = (f_1(g_1, \dots, g_n), \dots, f_u(g_1, \dots, g_n)).$$

[D.F. Ye, Z.D. Dai, K.Y. Lam, 2001]

- h_1, \ldots, h_u are polynomials of degree 4
- Restrict our attention to homogeneous instances
 - $f_1, \ldots, f_u, g_1, \ldots, g_n$ are homogeneous quadratic poly.

Preliminary Remarks – (II)

FDP

Find
$$\mathbf{f} = (f_1, \dots, f_u) : \mathbb{K}^n \to \mathbb{K}^u, \mathbf{g} = (g_1, \dots, g_n) : \mathbb{K}^n \to \mathbb{K}^n$$
, s. t.
$$\mathbf{h} = (h_1, \dots, h_u) = (f_1(g_1, \dots, g_n), \dots, f_u(g_1, \dots, g_n)).$$

- The f_i s can be deduced from the g_i s.
- Let $L: \mathbb{K}^n \to \mathbb{K}^n$ be a bijective linear mapping, then :

$$h = (f \circ L^{-1}) \circ (L \circ g).$$

Description of the Algorithm – (I)

FDP

Find
$$\mathbf{f} = (f_1, \dots, f_u) : \mathbb{K}^n \to \mathbb{K}^u, \mathbf{g} = (g_1, \dots, g_n) : \mathbb{K}^n \to \mathbb{K}^n$$
, s. t.

$$\mathbf{h} = (h_1, \ldots, h_u) = (f_1(g_1, \ldots, g_n), \ldots, f_u(g_1, \ldots, g_n)).$$

Goal

• Find a basis of $\mathcal{L}(g) = \text{Vect}(g_1, \dots, g_n)$.

Property

Let
$$\partial \mathcal{I}_h = \left\langle \frac{\partial h_i}{\partial x_j} : 1 \le i \le u, 1 \le j \le n \right\rangle$$
, then for all $i, 1 \le i \le n$:

$$x_n^{d+1} \cdot g_i \in \partial \mathcal{I}_h$$
, for some $d \geq 0$.

Description of the Algorithm – (II)

Property

A (red.) DRL Gröbner basis of an ideal \mathcal{I} contains a basis of

$$\left\{ \mathbf{Q} \in \mathcal{I} : \deg(\mathbf{Q}) = \min_{\mathbf{Q} \in \mathcal{I}} (\deg(\mathbf{Q})) \right\}.$$

Lemma

Let G' be a reduced DRL Gröbner basis of $\partial \mathcal{I}_h$. Then :

$$\operatorname{Vect}\left(\frac{g'}{x_n^{d+1}}: g' \in G', \operatorname{and} x_n^{d+1}|\operatorname{LM}(g')\right) = \mathcal{L}(g),$$

provided that the decomposition is "unique".

Complexity Analysis

Property

Let G' be a DRL (d+3)-Gröbner basis of $\partial \mathcal{I}_h$. Then :

$$\operatorname{Vect}\left(rac{g'}{x_n^{d+1}}:g'\in G', \operatorname{and} x_n^{d+1}|\operatorname{LM}(g')
ight)=\mathcal{L}(g).$$

Conjectured Complexity [with the F₅ algorithm]

$$O(n^{3(d+3)})$$
, with $d \approx n/u - 1$

- $O(n^9)$, for n = u [D.F. Ye, Z.D. Dai, K.Y. Lam, 2001]
- $O(n^{12})$, for $n/u \approx 2$

Experimental Results

n	b	n _i	r	q	d _{theo}	d _{real}	T	$\sqrt{q^n}$
20	5	4	10	65521	1	1	78.9 s.	$pprox 2^{160}$
20	10	2	10	65521	1	1	78.8 s.	$pprox 2^{160}$
20	2	10	10	65521	1	1	78.7 s.	$pprox 2^{160}$
24	6	4	12	65521	1	1	376.1 s.	$pprox 2^{192}$
30	15	2	15	65521	1	1	2910.5 s.	$pprox 2^{160}$
32	8	4	10	65521	1	1	3287.9 s.	$pprox 2^{256}$
32	8	4	16	65521	1	1	4667.9 s.	$pprox 2^{256}$
36	18	2	15	65521	1	1	13427.4 s.	$pprox 2^{256}$

L. Goubin, J. Patarin.

Asymmetric Cryptography with S-Boxes.

ICICS'97.

2R/2R and FDP Solving FDP

Remark

J.C Faugère, L. P.

An Efficient Algorithm for Decomposing Multivariate Polynomials and its Applications to Cryptography.

Further Algebraic Attack

- ☐ J. H. Silverman, N. P. Smart, F. Vercauteren. An Algebraic Approach to NTRU $(q = 2^n)$ via Witt Vectors and Overdetermined Systems of Nonlinear Equations. SCN 2004.
- G. Bourgeois, J.-C. Faugère.

 Algebraic attack on NTRU with Witt vectors.

 SAGA 2007.
- A. Bauer, A. Joux.

 Toward a Rigorous Variation of Coppersmith's Algorithm on Three Variables.

 Eurocrypt 2007

Next Challenge

(Algebraic) Cryptanalysis of:

- HFE-
- UOV

Algebraic Cryptanalysis of NTRU

Initial Problem

• Algebraic System over \mathbb{Z}_{2^n}

Ring of Witt Vectors $(W_m(\mathbb{F}_2),+,\cdot)$

$$W_m(\mathbb{F}_2)$$
: $[a_0,\ldots,a_{m-1}] \in \mathbb{F}_2^m \ (\mapsto \sum_{i=0}^{m-1} a_i 2^i \in \mathbb{Z}_{2^m})$
Let $a = [a_0,\ldots,a_{m-1}], \ b = [b_0,\cdots,b_{m-1}]$

•
$$a + b = [S_0(a, b), \dots, S_{m-1}(a, b)]$$

•
$$a \cdot b = [P_0(a, b), \cdots, P_{m-1}(a, b)]$$

where:

$$S_0,\ldots,S_{m-1},P_0,\ldots,P_{m-1}\in\mathbb{F}_2[x_0,\ldots,x_{m-1},y_0,\ldots,y_{m-1}].$$

•
$$S_0(a,b) = a_0 + b_0, P_0(a,b) = a_0b_0$$

$$S_1(a,b) = a_0b_0 + a_1 + b_1, P_1(a,b) = a_0b_1 + b_0a_1$$

Further Reading (In preparation ...)

- Invited Editors: D. Augot, J.-C Faugère, L. P. Gröbner Bases Techniques in Cryptography and Coding Theory Special Issue, Journal of Symbolic Computation
- Invited Editors: T. Mora, M. Sala, C. Traverso, L. P., M. Sakata.
 Gröbner Bases, Coding, and Cryptography.
 RISC book series (Springer, Heidelberg)
- Invited Editors: J.-C Faugère, F. Rouiller.

 Efficient Computation of Gröbner Bases.

 Special Issue, Journal of Symbolic Computation