Ludovic Perret

SPIRAL/SALSA
LIP6, Université Paris 6
INRIA
ludovic.perret@lip6.fr

ECRYPT PhD SUMMER SCHOOL
Emerging Topics in Cryptographic Design and Cryptanalysis

SyumsL Inplantatons e
SP IRAlR::MMW




Algebraic Cryptanalysis of HFE
Isomorphism of Polynomials (IP)

The Functional Decomposition Problem
Conclusion

Grbébner Bases in Cryptography ?

C.E. Shannon

“Breaking a good cipher should require as much work as
solving a system of simultaneous equations in a large number
of unknowns of a complex type.”

Communication Theory of Secrecy Systems, 1949.
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@ Convert a cryptosystem into an algebraic set of equations
@ Try to solve this system
= Grobner bases
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Why Using Grébner Bases ?

@ Based on an elegant and rich mathematical theory
= Buchberger’s talk

@ Most efficient method for solving algebraic systems

@ Efficient implementations available

e Buchberger’s algorithm (Singular, Gb, .. .)
e F, algorithm (Magma, Maple 10, Fgb, ...)

L. Perret Grobner Bases in Public-Key Cryptography



Algebraic Cryptanalysis of HFE
Isomorphism of Polynomials (IP)

The Functional Decomposition Problem
Conclusion

Efficient Algebraic Cryptanalysis ?

@ Convert a cryptosystem into an algebraic set of equations
a particular attention to the way of constructing the system
exploit all the properties of the cryptosystem

@ Try to solve the simplified system
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Efficient Algebraic Cryptanalysis ?

@ Convert a cryptosystem into an algebraic set of equations
a particular attention to the way of constructing the system
exploit all the properties of the cryptosystem

@ Try to solve the simplified system

= Minimize the number of variables/degree
= Maximize the number of equations
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Efficient Algebraic Cryptanalysis ?

@ Convert a cryptosystem into an algebraic set of equations
a particular attention to the way of constructing the system
exploit all the properties of the cryptosystem
@ Simplify the system
@ Try to solve the simplified system

= Minimize the number of variables/degree
= Maximize the number of equations
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@ Block Ciphers (= Cid’s talk)
@ Stream Ciphers (=-Johansson/Canteaut ’s talk & Cid’s talk)
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Outline

ﬂ Algebraic Cryptanalysis of HFE
e Isomorphism of Polynomials (IP)
@ Description of the Problem
@ An Algorithm for Solving IP
@ The Functional Decomposition Problem
@ 2R/2R~ and FDP
@ Solving FDP

e Conclusion
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The HFE scheme

[J. Patarin, Eurocrypt 1996]
Secret key :
@ (S,U) € GLy(K) x GLy(K)
0 A=Y, ﬁ,ﬁjxqg""*qg’{” € K'[X], with K’ © K, g = Char(K)
@ a=(a(Xt,...,Xn),-.-,an(X1,..., X)) € K[xq,...,Xq]"
Public key :

(b1(x),...,ba(x)) = (a1(xS),...,an(xS)) U,

with x = (xq,..., Xn).
Encryption : To enc. m € K", ¢ = (by(m),. .., by(m)).
Signature : To sig. m € K”, find s € K" s.t. b(s) = m.
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Message Recovery Attack — (I)

Given ¢ = (by(m),...,bs(m)) € K". Find z € K", such that :

In Theory ...

@ PoSSo is NP-Hard
@ Complexity of F5 for semi-reg. sys. : O (n* %), with :

= For a quadratic system of 80 variables : dieg = 11.
~ 28
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Message Recovery Attack — (II)

In Practice . ..
Complexity of Fg : 20(09(n)?)

[4 J.-C. Faugeére, A. Joux.

Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems using Grébner Bases.
CRYPTO 2003.

[+ L. Granboulan, A. Joux, J. Stern.
Inverting HFE is Quasipolynomial.
CRYPTO 2006.
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“Key Recovery Attack"

2PLE

Given:a=(ay,...,au),andb = (by,...,by) € K[xq,..., xn]".
Question : Find (S, U) € GL(K) x GLy(K), s. t. :

(b1(x), ..., ba(x)) = (a1(xS),...,an(xS)) U,
denoted by b(x) = a(xS)U, with x = (X1, ..., Xn).

[4 J. Patarin.
Hidden Fields Equations (HFE) and Isomorphism of
Polynomials (IP): two new families of Asymmetric
Algorithms.
EUROCRYPT 1996.
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A Basic Problem — (I)

@ HFE and related schemes (C*, SFLASH, ...)
o A= X" c K/[X], with K’ D K, and q = Char(K)
@ signature/authentication schemes

[4 J. Patarin.
Hidden Fields Equations (HFE) and Isomorphisms of
Polynomials (IP) : two new families of Asymmetric
Algorithms.
EUROCRYPT 1996.

@ Traitor Tracing schemes
[4 O. Billet, H. Gilbert.

A Traceable Block Cipher.
ASIACRYPT 2003.
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A Basic Problem — (II)

Code Equivalence (CE)

Given : two matrices Gy, and Go € My n(Fyq).
Find : —if any — S € GL(F4), and a permutation o € Sy, s.t. :

Go = SG1P,,

where :
(PU),'J = 1, if O’(I) :j, and

(P,)ij = 0, otherwise.
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A Basic Problem — cont'd

McEliece’s Cryptosystem (1978)

Secret key : S € GL,(F2), a permutation o on {1,...,n}.
Public data : G € My n(Fz)
Public key :

G = SGP,,

where :
(Py)ij=1, ifo(i) =j, and
(P,)ij = 0, otherwise.

Encryption : To encrypt m € F, compute:
c=mG +eg,

with e € F1, s.t. wy(e) = t.
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A Basic Problem — cont'd

Graph Isomorphism Problem

Given: Gy = (V4,Eq), Go = (V2, B2)
Question : Find — if any — a bijection p : V; — V5, such that:

(i,j) € Eq if, and only if, (p(i), p(j)) € Ez.
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Hard Problems ?

[4 N. Sendrier.
Finding the permutation between equivalent codes: the
Support Splitting Algorithm.
IEEE Transactions on Information Theory, July 2000.

¥ L. Babai.
Automorphism groups, isomorphism, reconstruction.
Handbook of combinatorics.
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Basic ldea — ()

Fact

Suppose that b(x) = a(xS)U, for (S, U) € GLy(K) x GLy(K).
Foreachi,1 <i<u, there existE; C K", and p,, s. t. :

(b(Xx)U~* —a(xS)), = Yoo PSS U X

aj=(a;j 1, n)EE;

where po,(S, U™") = Pa,(S1.1,- -+, S, Uy 45 -5 U y)-

)

4 J.-C. Faugére, L. P.
Polynomial Equivalence Problems: Algorithmic and
Theoretical Aspects.
EUROCRYPT 2006.
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If b(x) = a(xS)U, for some (S, U) € GLy(K) x GL,(K), then for
allijt<i<u:(b(x)U*—a(xS)), =

S RS U =0,

Ot,‘=(oz,',1 ,...,a,',n)GE,‘

Thus, forall i,1 <i<u,andforall o; € E; :

Po;(S,U"1) = 0.
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Basic Idea — (Ill)

Lemma
LetZ = (pa;,Vi,1 <i<u, andVa; € Ej), and :

V(T) = {s e K™+ . paj(s) = 0,V1 < i < u, and Vo, € E;}.
Ifb(x) = a(xS)U, for some (S, U) € GLy(K) x GL,(K), then :
(01(S), 92(U™1)) € V(2),
with :

¢1 = S = {Si7/}1§i7l§n — (3171,. . .,S1,n, .. .,Sn’1, .. -,Sn,n)a
o U™t = {U;’j}‘]g,‘,jgu = ({088 gjo oo B oo Wl oo o B
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A Structural Property

Lemma

Let d be a positive integer, and I, C Fqy, z] be the ideal
generated by the polynomials pa; of maximal total degree
smaller than d. Let also V(Z4) be the variety associated to Z.
Ifb(x) = a(xS)U, for some (S, U) € GL,(K) x GL,(K), then :

($1(S), $2(U™1)) € V(Zy), foralld,0 < d < D,
with:

¢1:S={sijt1<ij<n = (S1,4,---S1,n,---,Sn1, .-, Snn), and
oo U™t = {u,fjj}1§,-7jgu B (U] qyee ey UG ooy Upy gy ee, Uy )
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The 2PLE algorithm

Input : (a,b) € K[xq,...,x5]¥ x K[xq,..., Xn]¥
Output : (S, U) € GLy(K) x GL4(K), s.t. b(x) = a(xS)U
Let dp = min{d > 1:a(% #£ 04}
@ Construct the pa;s of max. total degree smaller than a,
@ Set
Loy = (paj, Vi, 1 <i<u, and Va; € E; : deg(pa;) < dp).

@ Compute V(Zy,)
@ Find a solution of 2PLE among the elements of V(Zy,)
@ Return this solution
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We solve algebraic systems of :
@ O(u- n%) equations of degree at most dj
@ dy = 2 in practice
@ 1 + u? unknowns
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Experimental Results — Random instances

u=n,deg=2
n_| #unk. q TGen Tr, TrFs T q"®
8 128 218 0.3s. 0.1s. 6 0.4s. 264
15 450 216 48s. 10s. 23 58s. 2120
17 578 216 137.2s. 27.9s. 31 195.1s. | 27%6
20 | 800 218 569.1s. | 91.5s. 41 660.6s. | 2760
15| 450 | 65521 | 35.5s. 8s. 23 | 435s. | 212
20 | 800 | 65521 | 434.9s. | 69.9s. | 41 | 504.8s. | 2%
23 | 1058 | 65521 | 1578.6s. | 235.9s. 1814s. | 28

[ N. Courtois, L. Goubin, J. Patarin.

Improved Algorithms for Isomorphism of Polynomials.

EUROCRYPT 1998.

L. Perret Grobner Bases in Public-Key Cryptography




Algebraic Cryptanalysis of HFE

Isomorphism of Polynomials (IP) Description of the Problem
The Functional Decomposition Problem An Algorithm for Solving IP
Conclusion

Experimental Results — C* Instances

u=n
n | #unk. | q | deg | Tgen TF, T q"
5 50 [2™| 4 | 0.2s. | 0.13s. | 0.33s. | 2%
6 72 218 4 0.7s. 1s. 1.7s. 2%
7 98 216 | 4 1.5s. 6.1s. 7.6s. 2112
8 128 | 276 4 38s. | 543s. | 58.1s. | 218
9 162 | 27 4 5.4s. 79.8s. | 85.2s. 2744
10 | 200 | 278 4 12.9s. | 532.3s. | 545.2s. | 2760
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The HFE scheme

[J. Patarin, Eurocrypt 1996]
Secret key :
@ (S,U) € GLy(K) x GLy(K)
0 A=Y, ﬁ,ﬁjxqg""*qg’{” € K'[X], with K’ © K, g = Char(K)
@ a=(a(Xt,...,Xn),-.-,an(X1,..., X)) € K[xq,...,Xq]"
Public key :

(b1(x),...,ba(x)) = (a1(xS),...,an(xS)) U,

with x = (xq,..., Xn).
Encryption : To enc. m € K", ¢ = (by(m),. .., by(m)).
Signature : To sig. m € K”, find s € K" s.t. b(s) = m.
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2R/2R~ schemes

SK :
@ Three affine bijections r, s, t : K" — K"
@ Two applications v, ¢ : K" — K"
PK:hy,...,hy,...,hy € K[xq,...,Xs] describing :
h=toyosopor K" — K"
N~

N——
f 9

2R~ schemes : some polynomials of the PK are removed
[+ L. Goubin, J. Patarin.

Asymmetric Cryptography with S-Boxes.
ICICS97.
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Input: h = (hy,..., hy) € K[xqy,...,xa]".
Find :

o f=(f,...,fuy) #heK[xq,...,xn]", and

° g=(g17--'agn)EK[X17"'7Xn]n5
such that :

h:(fog): (ﬁ(g‘l?"'vgn)""7fU(g17"'7gn))'
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Related works

[% J.von zur Gathen, J. Gutierrez, R. Rubio
Multivariate Polynomial Decomposition.
Applicable Algebra in Engineering, Communication and
Computing, 2004.

[4 D.F. Ye, Z.D. Dai, K.Y. Lam. (u = n)
Decomposing Attacks on Asymmetric Cryptography Based
on Mapping Compositions.
Journal of Cryptology, 2001.
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Related works

[% J.von zur Gathen, J. Gutierrez, R. Rubio
Multivariate Polynomial Decomposition.
Applicable Algebra in Engineering, Communication and
Computing, 2004.

[4 D.F. Ye, Z.D. Dai, K.Y. Lam. (u = n)
Decomposing Attacks on Asymmetric Cryptography Based
on Mapping Compositions.
Journal of Cryptology, 2001.

[4 E.Biham.
Cryptanalysis of Patarin’s 2-Round Public Key System with
S-Boxes (2R).
CRYPTO 2000.
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Preliminary Remarks — (I)

FDP
Findf=(f,...,f,) : K" > KY 9= (g1,....9n) : K" > K", s. L.

h=(h,....0)=(f(91.- -, 9n),-- - fu(G1, - Gn))-

[D.F. Ye, Z.D. Dai, K.Y. Lam, 2001]

@ hy,...,h, are polynomials of degree 4
@ Restrict our attention to homogeneous instances
e fi,...,fu,091,...,9n are homogeneous quadratic poly.
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Findf=(fi,....f,) K" - KY,g=(g1,...,9n) : K" = K", . t.

h=(h1,...,hu)= (f1(g1,...,gn),...,fu(g1,...,gn)).

@ The f;s can be deduced from the g;s.
@ Let L: K" — K" be a bijective linear mapping, then :

h=(foL *)o(Log).




Findf=(f,...,f,) : K"=>K“ 9g=(91,.-.,9n) : K" - K", s. .

h:(h17'--7hu): (f1(g17"'7gn)a--'7fu(g1a"'7gn))-

@ Find a basis of £L(g) = Vect(g1, ..., 9n)-

Letth:<g—f(’]{:1§i§u,1 §j§n>,thenforalli,1 <i<n:

x9t1 . g; € 0T, for some d > 0.
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Description of the Algorithm — (lI)

Property
A (red.) DRL Grébner basis of an ideal Z contains a basis of

{Q €T :deg(Q) = mingez(deg(Q)) } .

Lemma
Let G’ be a reduced DRL Grébner basis of 9Z,. Then :

/
Vect< gH g € G’,andx,?’+1|LM(g’)> = L(9),
Xn

provided that the decomposition is “unique”.
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Complexity Analysis
Property

Let G’ be a DRL (d + 3)-Grobner basis of 9Zp. Then :

/
Vect (xg“ . g’ € G,and x2*' \LM(g’)) = L(9).
n

Conjectured Complexity [with the F5 algorithm]
O(nP(@+3)) with d ~ n/u — 1
o O(ng), for n= u [D.F. Ye, Z.D. Dai, K.Y. Lam, 2001]
@ O(n'),for nju~?2
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Experimental Results

n b | n r q Oiheo | Oreal T Vq"
20| 5 4 | 10 | 65521 1 1 78.9 s. ~ 2760
20 110 | 2 | 10 | 65521 1 1 78.8 s. ~ 2760
20| 2 | 10 | 10 | 65521 1 1 78.7 s. ~ 2760
24 | 6 4 | 12 | 65521 1 1 376.1 s. ~ 2192
30 15| 2 | 15 | 65521 1 1 2910.5s. | =~ 2780
32| 8 4 | 10 | 65521 1 1 3287.9s. | ~ 2°%6
32| 8 4 | 16 | 65521 1 1 4667.9s. | ~ 2256
36 | 18 | 2 | 15 | 65521 1 1 13427 .4 s. | ~ 226

[4 L. Goubin, J. Patarin.
Asymmetric Cryptography with S-Boxes.
ICICS97.
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J.C Faugeére, L. P.
An Efficient Algorithm for Decomposing Multivariate
Polynomials and its Applications to Cryptography.
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Further Algebraic Attack

[4 J.H. Silverman, N. P. Smart, F. Vercauteren.
An Algebraic Approach to NTRU (q = 2") via Witt Vectors
and Overdetermined Systems of Nonlinear Equations.
SCN 2004.

[4 G. Bourgeois, J.-C. Faugere.
Algebraic attack on NTRU with Witt vectors.
SAGA 2007.

[ A.Bauer, A. Joux.
Toward a Rigorous Variation of Coppersmith’s Algorithm on

Three Variables.
Eurocrypt 2007.
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(Algebraic) Cryptanalysis of :
@ HFE-

e UOV
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Algebraic Cryptanalysis of NTRU

Initial Problem
@ Algebraic System over Zon

Ring of Witt Vectors (W (F2),+,")
Wi (F2) : [ao, ..., 8m—1] € FZ (— Y7 a2’ € Zom)
Leta=[ag,...,am-1], b=[bo, -, bm-1]
@ at+b=[Sy(ab),...,Sn_1(a b)]
@ a-b=[Py(a,b), - ,Pmn_1(a,b)]
where:
So,...,Sm_1,P0,...,Pm_1 € Fg[Xo,...,Xm_1,y0,...,ym_1].

@ So(a,b) = ag + bo, Po(a, b) = agbo
@ Si(a,b) = agby + a1 + by, P1(a, b) = agbs + bpay

L. Perret Grobner Bases in Public-Key Cryptography



Algebraic Cryptanalysis of HFE
Isomorphism of Polynomials (IP)

The Functional Decomposition Problem
Conclusion

Further Reading (In preparation ...)

[ Invited Editors : D. Augot, J.-C Faugeére, L. P.
Grébner Bases Techniques in Cryptography and Coding
Theory
Special Issue, Journal of Symbolic Computation

[4 Invited Editors : T. Mora, M. Sala, C. Traverso, L. P, M.
Sakata.
Grébner Bases, Coding, and Cryptography.
RISC book series (Springer, Heidelberg)

[4 Invited Editors : J.-C Faugeére, F. Rouiller.
Efficient Computation of Grébner Bases.
Special Issue, Journal of Symbolic Computation
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