## ECRYPT Emerging Topics in Cryptographic Design and Cryptanalysis 30 April- 4 May 2007, Samos Greece



















| • digital signatures: OWHF/CRHF, destroy algebraic structure                        |
|-------------------------------------------------------------------------------------|
| <ul> <li>information authentication: protect authenticity of hash result</li> </ul> |
| <ul> <li>protection of passwords: preimage resistant</li> </ul>                     |
| <ul> <li>confirmation of knowledge/commitment: OWHF/CRHF</li> </ul>                 |
| <ul> <li>pseudo-random string generation/key derivation</li> </ul>                  |
| <ul> <li>micropayments (e.g., micromint)</li> </ul>                                 |
| <ul> <li>construction of MACs, stream ciphers, block ciphers</li> </ul>             |
| <ul> <li>(redundancy: hash result appended to data before encryption)</li> </ul>    |
|                                                                                     |













































| Imp | proving MD iteration                                                                                                                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •   | add salting (family of functions, randomization)<br>add a strong output transformation g (which includes total<br>length and salt)<br>preclude fix points: counter $f \rightarrow f_i$ (Biham) or dithering<br>(Rivest) |
| •   | multi-collisions, herding: avoid breakdown at 2 <sup>n/2</sup> with larger<br>internal memory (e.g., RIPEMD, [Lucks05])<br>rely on principles of block cipher design, but with larger<br>security margins               |
| •   | be careful when combining smaller building blocks (à la MDC-2/MDC-4)                                                                                                                                                    |
| •   | can we build in parallelism and incrementality in an elegant way?                                                                                                                                                       |



















| MDx-type cryptanalysis                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Serious flaws in MD4 and MD5 [RIPE '91-'92]</li> <li>SHA replaced by SHA-1 [NSA '94]</li> <li>Collisions for MD4, problem in extMD4 [Dobbertin '96]</li> <li>More problems of MD5 and RIPEMD [Dobbertin '96]</li> </ul> |
| <ul> <li>Collisions for Haval [Biryukov, Van Rompay, Preneel '02]</li> <li>Collisions for SHA-0 [Joux '04]</li> <li>Collisions for MD4 (by hand), MD5, and RIPEMD [Wang, Feng, Lai,<br/>Yu '04]</li> </ul>                       |
| Attack on 53 out of 80 rounds of SHA-1 [Oswald-Rijmen'04 and<br>Biham-Chen] '04]                                                                                                                                                 |
| <ul> <li>2<sup>39</sup> attack on SHA-0 [Wang,Yu,Yin '05]</li> </ul>                                                                                                                                                             |
| • 269 attack on SHA-1 [Wang, Yin, Yu '05]                                                                                                                                                                                        |
| <ul> <li>2<sup>63</sup> attack on SHA-1 [Wang, Yao, Yao '05]</li> </ul>                                                                                                                                                          |











| н | Hash function: pseudorandom function (1)                                 |                                                                                                              |                                                    |    |  |  |  |  |
|---|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----|--|--|--|--|
| • | <ul> <li>MDx are by feedforwar</li> <li>if keyed to boomerang</li> </ul> | ased on a block cipher v<br>d: where to put the key?<br>the message input: rela<br>g distinguisher attacks a | vith a<br>ted key<br>pply [Kim+06]                 | E  |  |  |  |  |
|   |                                                                          | Rounds of attack                                                                                             | Data complexity                                    | ]↓ |  |  |  |  |
|   | Haval-4                                                                  | 96                                                                                                           | 2 <sup>11.6</sup> RK-CP + 2 <sup>6</sup> RK-ACC    | 1  |  |  |  |  |
|   | MD4                                                                      | 48                                                                                                           | 26 RK-CP + 26 RK-ACC                               | 1  |  |  |  |  |
|   | MD5                                                                      | 64                                                                                                           | 2 <sup>13.6</sup> RK-CP + 2 <sup>11.6</sup> RK-ACC | 1  |  |  |  |  |
|   | SHA-1                                                                    | 59 of 80                                                                                                     | 270.3 RK-CP + 268.3 RK-ACC                         |    |  |  |  |  |
| Î | many hash functions are based on pretty weak block ciphers               |                                                                                                              |                                                    |    |  |  |  |  |

| • HMA<br>— c<br>— n | C keys throug<br>ollisions for MD<br>ew attacks on r | gh the IV (pla<br>5 invalidate cur<br>educed version | intext) [Kim+06]<br>rent security proof of<br>of HMAC-MD5 and | of HMAC-MD5<br>I HMAC-SHA-1 |
|---------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-----------------------------|
|                     | Rounds in f2                                         | Rounds in f1                                         | Data complexity                                               | <mark>K₁</mark> ↓↓×         |
| Haval-4             | 128                                                  | 102 of 128                                           | 2 <sup>254</sup> CP                                           | f,                          |
| MD4                 | 48                                                   | 48                                                   | 2 <sup>74</sup> CP                                            |                             |
| MD5                 | 64                                                   | 33 of 64                                             | 2 <sup>126.1</sup> CP                                         |                             |
| SHA                 | 80                                                   | 80                                                   | 2 <sup>109</sup> CP                                           | f <sub>2</sub>              |
| SHA-1               | 80                                                   | 43 of 80                                             | 2 <sup>154.9</sup> CP                                         | ] ]                         |
| n                   | no problem                                           | yet for most v                                       | videly used sche                                              | emes                        |





| las | n functions: further reading                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| •   | ECRYPT workshops in May 2007 and June 2005 +<br>statement on hash functions at http://www.ecrypt.eu.org                  |
| •   | NIST workshop October 31-November 1, 2005 and August 24-25, 2006<br>http://www.csrc.nist.gov/pki/HashWorkshop/index.html |
| •   | The IACR eprint server http://eprint.iacr.org                                                                            |
| •   | My 1993 PhD thesis http://homes.esat.kuleuven.be/~preneel                                                                |
| •   | Overview paper from 1998 (LNCS 1528)<br>http://www.cosic.esat.kuleuven.be/publications/article-<br>246.pdf               |
| D   | Thank you for your attention                                                                                             |