

Outline

Al

- definitions
- applications
- generic attacks
- attacks on iterated constructions
- attacks on custom designed hash functions: MD5, SHA, SHA-1
- alternative constructions
- pseudo-randomness
- conclusions

N1 20:

Formal definition: $\left(2^{\text {nd }}\right)$ preimage resistance

Notation: $\Sigma=\{0,1\}, I(n)>n$
A one-way hash function (OWFH) H is a function with domain $D=\Sigma^{1(n)}$ and range $R=\Sigma^{n}$ that satisfies the following conditions:

- preimage resistance: let x be selected uniformly in D and let M be an adversary that on input $h(x)$ uses time $\leq t$ and outputs $M(h(x)) \in$ D. For each adversary M,

$$
\operatorname{Pr}_{x \in D}\{h(M(h(x)))=h(x)\}<\varepsilon
$$

Here the probability is also taken over the random choices of M.

- 2nd preimage resistance: let x be selected uniformly in $D=\Sigma^{1(n)}$ and let M^{\prime} be an adversary who on input x uses time $\leq t$ and outputs $x^{\prime} \in D$ with $x^{\prime} \neq x$. For each adversary M^{\prime}, $P r_{x \in D}\left\{h\left(M^{\prime}(x)\right)=h(x)\right\}<\varepsilon$
Here the probability is taken over the random choices of M^{\prime}.

Formal definitions - continued

- For collision resistance: considering a family of hash functions indexed by a parameter ("key") is essential for formalization (but see Rogaway '06: "formalizing human ignorance")
- For (2nd) preimage resistance, one can choose the challenge (x) and/or the key that selects the function.
- This gives three flavours [Rogaway-Shrimpton'04]
- random challenge, random key (Pre and Sec)
- random key, fixed challenge (ePre and eSec everywhere) (eSec=UOWHF)
- fixed key, random challenge (aPre and aSec - always)
- Complex relationship (see figure on next slide)

1
20:

Brute force $\left(2^{\text {nd }}\right)$ preimage
m.

- If one can attack 2^{t} simultaneous targets, the effort to find a single preimage is 2^{n-t}
— note for $\mathrm{t}=\mathrm{n} / 2$ this is $2^{\mathrm{n} / 2}$
- [Hellman80] if one has to find (second) preimages for many targets, one can use a time-memory trade-off with $\Theta\left(2^{n}\right)$ precomputation and storage $\Theta\left(2^{2 n / 3}\right)$
- inversion of one message in time $\Theta\left(2^{2 n / 3}\right)$
- [Wiener02] if $\Theta\left(2^{3 n / 5}\right)$ targets are attacked, the full cost per ($\left.2^{\text {nd }}\right)$ preimage decreases from $\Theta\left(2^{n}\right)$ to $\Theta\left(2^{2 n / 5}\right)$
- answer: randomize hash function
-salt, spice, "key": parameter to index family of functions

The birthday paradox (2) ,

- Given a set with S elements
- Choose r elements at random (with replacements) with r « S
- The probability p that there are at least 2 equal elements (a collision) is $1-\exp (-r(r-1) / 2 S)$
- The number of collisions follows a Poisson distribution with $\lambda=r(r-1) / 2 S$
-The expected number of collisions is equal to λ
—The probability to have collision is $e^{-\lambda} \lambda^{c} / c$!
- S large, $r=\sqrt{ } S, p=0.39$
- $S=365, r=23, p=0.50$

拿

Brute force attacks in practice
, 5

- $\left(2^{\text {nd }}\right)$ preimage search
$-n=128: 500 \mathrm{M} \$$ for 1 year if one can attack 2^{48} targets in parallel
$-n=128: 500 B \$$ for 1 year if one can attack 2^{38} targets in parallel
- parallel collision search
$-n=128: 100 \mathrm{~K} \$$ for 1 month
- $n=160: 500 \mathrm{M} \$$ for 1 year
— need 256-bit result for long term security (25 years or more)

Construction: relation between f and $h(2)$
[Damgård-Merkle 89]
Let f be a collision resistant function mapping / to n bits (with $/>n$)

- If the padding contains the length of the input string, and if f is preimage resistant, the iterated hash function h based on f will be a CRHF.
- If an unambiguous padding rule is used, the following construction will yield a CRHF $(I-n>1)$:
$H_{1}=f\left(H_{0}\|0\| x_{1}\right)$ $H_{i}=f\left(H_{i-1}\|1\| x_{i}\right) i=2,3, \ldots t$

Construction: relation between f and $h(3)$

[Lai-Massey'92]

Assume that the padding contains the length of the input string, and that the message x (without padding) contains at least two blocks.

Then finding a second preimage for h with a fixed $I V$ requires 2^{n} operations iff finding a second preimage for f with arbitrarily chosen H_{i-1} requires 2^{n} operations.

- this theorem is not quite right (see below)
- very few hash functions have a strong compression function
- very few hash functions are designed based on a strong compression function in the sense that they treat x_{i} and H_{i-1} in the A same way.

Defeating MD for $2^{\text {nd }}$ preimages

- Known since Merkle: if one hashes 2^{t} messages, the average effort to find a second preimage for one of them is 2^{n-t}
- New: if one hashes 2^{t} message blocks with an iterated hash function, the effort to find a second preimage is only $t 2^{n / 2+1}+2^{n-t+1}$.
- Idea: create expandable message using fixed points —Finding fixed points can be easy (e.g., Davies-Meyer).
- find $2^{\text {nd }}$ preimage that hits any of the 2^{t} chaining values in the calculation
- stretch the expandable message to match the length (and thus the length field)
- But still very long messages for attack to be meaningful
- $n=128, t=32$, complexity reduced from 2^{128} to 2^{97}, length is 256 Gigabyte

部

Improving MD iteration

- add salting (family of functions, randomization)
- add a strong output transformation g (which includes total length and salt)
- preclude fix points: counter $f \rightarrow f_{i}$ (Biham) or dithering (Rivest)
- multi-collisions, herding: avoid breakdown at $2^{\mathrm{n} / 2}$ with larger internal memory (e.g., RIPEMD, [Lucks05])
- rely on principles of block cipher design, but with larger security margins
- be careful when combining smaller building blocks (à la MDC-2/MDC-4)
- can we build in parallelism and incrementality in an elegant way?

- many (50+) broken schemes:
- Rabin, Jueneman,X. 509 Annex D, FFT-hash I and II, N-hash, Snefru, MD2, ...
- fast schemes for 32-bit machines:
- most popular designs: MD4 and MD5
- US government (NIST): SHA (aka SHA-0) and SHA-1
— Europe: RIPEMD-160
- the next generation: SHA-256, SHA-512, Whirlpool,...
- block cipher based
- based on algebraic constructions

- designed by Rivest in 1991
- 4 rounds
- "collisions" for compression function f [denBoerBosselaers93] - IIV
- real collisions for compression function f [Dobbertin96] - wrong IV
- real collisions in 2^{39} steps [Wang+'04]
... now in minutes $\left(2^{30}\right)!!$
罩

- designed by Rivest in 1990
- 3 rounds
- collisions for 2 rounds [Merkle'90, denBoerBosselaers'91]
- collisions for full MD4 in 2^{20} steps [Dobbertin'96]
- (second) preimage for 2 rounds [Dobbertin'97]
- collisions for full MD4 by hand [Wang+'04]
- practical preimage attack for 1 in 2^{56} messages [Wang+'05]
- abandoned since 1993

19

SHA-1 (continued)

- De Cannière-Rechberger 06:
- automated search for characteristics
- collision for 64 out of 80 rounds in 2^{35} - highly structured
- Jun Yajima, Yu Sasaki, Teruyoshi Iwasaki, Yusuke Naito, Takeshi Shimoyama, Noboru Kunihiro, Kazuo Ohta (rump Crypto '06)
- Hawkes-Paddon-Rose
- Sugita-Kawazoe-Imai - Gröbner basis (no improvement)
-

(1)

- security degrades with number of applications
- for large messages even with the number of blocks (cf. supra)
- specific attacks exist for MD2/MD4
- For MD5/SHA-1: not a threat for current applications

W.

Fixes/Alternatives (2)

- number theoretic schemes
- secure but very slow (1 multiplication per bit)
— speedup by [Contini,Lenstra,Steinfeld 05] VSH
- still 20 times slower than SHA-1
- only collision resistance; some other weaknesses
- topic for further research (lattices, matrices)
- use older schemes: Tiger, Snefru with more rounds, block cipher based schemes (slow)
- start from scratch?

Impact of collisions (2)
,

- digital signatures: only an issue if for non-repudiation
- none for signatures computed before attacks were public (1 August 2004)
- none for certificates if public keys are generated at random in a controlled environment
- substantial for signatures after 1 August 2005 (cf. traffic tickets in Australia)

Fixes/Alternatives (1)

- RIPEMD-160 seems more secure than SHA-1 ©
- message precoding
- small patches to SHA-1
- use more recent standards (slower on 32-bit machines)
— SHA-256, SHA-512
- Whirlpool
- block cipher based schemes:
- well studied
- due to key schedule for every encryption at least 3-4 times slower than AES encryption
(1)

Hash function: pseudorandom function (3)

- Recent improvements: HMAC/NMAC attacks
- [Yin-Contini06] better attack on HMAC-MD4 and key recovery attack on NMAC-MD5 (Asiacrypt 2006)
- [Rechberger-Rijmen06] eprint.iacr.org and Financial Crypto

	Rounds in f2	Rounds in f1	Data complexity
SHA-1	80	53 of 80	$2^{98.5} \mathrm{CP}$

- Further improvements announced [Biham-Yin]

W.

Hash function: pseudorandom function (2)

- HMAC keys through the IV (plaintext) [Kim+06]
- collisions for MD5 invalidate current security proof of HMAC-MD5
— new attacks on reduced version of HMAC-MD5 and HMAC-SHA-1

	Rounds in f2	Rounds in f1	Data complexity
Haval-4	128	102 of 128	$2^{254} \mathrm{CP}$
MD4	48	48	$2^{74} \mathrm{CP}$
MD5	64	33 of 64	$2^{126.1} \mathrm{CP}$
SHA	80	80	$2^{109} \mathrm{CP}$
SHA-1	80	43 of 80	$2^{154.9} \mathrm{CP}$

no problem yet for most widely used schemes
(1)

Hash functions: conclusions

, 1

- hash functions such as SHA-1 would have needed 128160 rounds instead of 80
- recent attacks are not dramatic for all applications, but they form a clear warning: upgrade asap
- limited understanding (theory and practice)
- use weaker security assumptions if possible (UOWHF??)
- research on new and more robust designs with extra features
(1

Hash functions: further reading

- ECRYPT workshops in May 2007 and June 2005 + statement on hash functions at http://www.ecrypt.eu.org
- NIST workshop October 31-November 1, 2005 and August 24-25, 2006
http://www.csrc.nist.gov/pki/HashWorkshop/index.html
- The IACR eprint server http://eprint.iacr.org
- My 1993 PhD thesis http://homes.esat.kuleuven.be/~preneel
- Overview paper from 1998 (LNCS 1528)
http://www.cosic.esat.kuleuven.be/publications/article246.pdf

N

