Introduction	Berated hash functions on numbertherectic problems
Block cipher constructions	
On the Design of Hash Functions	
Lars R. Knudsen	
May 8, 2007	
$1 / 43$	

1 Introduction

2 Iterated hash functions

3 Based on number-theoretic problems

4 Block cipher constructions

$H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, for fixed value of n
$\begin{array}{llll}\text { Introduction Iterated hash functions } & \text { Based on number-theoretic problems } & \text { Block cipher constructions }\end{array}$
Iterated hash functions

Damgård and Merkle (1989)

Build $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ from $h:\{0,1\}^{m} \rightarrow\{0,1\}^{n}, m>n$

1 apply padding such that $x=x_{1}|\ldots| x_{t-1}$ and x_{t-1} full block
2 append to x integer $t-1$ as a string, $x=x_{1}|\ldots| x_{t-1} \mid x_{t}$
3 define $h_{0}=I V$ and $h_{i}=h\left(h_{i-1} \mid x_{i}\right)$ for $1 \leq i \leq t$
4 define $H(x)=h_{t}$

Theorem: collision for $H \Rightarrow$ collision for h
Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Generic attacks

For $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ and $h:\{0,1\}^{m} \rightarrow\{0,1\}^{n}, m>n$

attack	rough complexity
collisions	$\sqrt{2^{n}}=2^{n / 2}$
2nd preimages	2^{n}
preimage	2^{n}

Goal: generic attacks are best (known) attacks

Number-theoretic, difficult problems

- Factoring:

$$
\text { given } N=p q, \text { find } p \text { and } q,
$$

where p, q big, (odd) prime numbers, $p \neq q$

- Discrete logarithm

$$
\text { given } \beta=\alpha^{a} \bmod p, \text { find } a,
$$

where p prime, a chosen random from $Z_{p-1}, \alpha \in Z_{p}^{*}$ primitive

■ Note that not all instances of these problems are hard

Based on number-theoretic problems

■ $N=p q, p \neq q$, large odd primes, α fixed, large order $\bmod N$.

- Public: N, o

$$
\begin{aligned}
& H:\{0,1\}^{*} \rightarrow Z_{N}^{*} \\
& H(x)=\alpha^{x} \bmod N
\end{aligned}
$$

- Collision: $H(x)=H\left(x^{\prime}\right) \Rightarrow x-x^{\prime}=k \phi(N)$.
- With $N=p q$ and $\phi(N)=(p-1)(q-1)$ easy to find p and q

Based on number-theoretic problems (2)

- Pfitzmann, Van Heijst

■ Public primes: $p, q=\frac{p-1}{2}$, s.t. $\operatorname{DLP}(p)$ is hard
■ Public primitive elements of $Z_{p}: \alpha, \beta$ (randomly chosen)

$$
\begin{gathered}
h: Z_{q} \times Z_{q} \rightarrow Z_{p}^{*} \\
h(x, y)=\alpha^{x} \beta^{y} \bmod p
\end{gathered}
$$

- Find a collision for $h \Rightarrow$ compute $\log _{\alpha}(\beta)$

Based on number-theoretic problems (3)

- Goldwasser, Micali, Rivest

■ $N=p q, p \neq q$, large primes, a_{0}, a_{1} random squares modulo N
■ Public: N, a_{0}, a_{1}

$$
\begin{gathered}
h:\{0,1\} \times Z_{N}^{*} \rightarrow Z_{N}^{*} \\
h(b, y)=y^{2} a_{0}^{b} \quad a_{1}^{1-b} \bmod N
\end{gathered}
$$

■ Collision gives x, x^{\prime} such that $x^{2}=x^{\prime 2} \bmod N \rightarrow$ factoring
■ More efficient variants with more squares a_{0}, \ldots, a_{k}, Damgård

Number-theoretic hash functions

- most schemes slow, e.g., no real speed-up for use in digital signature schemes
■ some schemes have unfortunate algebraic properties (may interact badly with other public-key algorithms)
■ open problem to devise efficient "provably" secure hash function

VSH - iterated hash function

- Let $N=p q$ be a public RSA modulus ($p \neq q$, both secret)

■ Let p_{1}, \ldots, p_{k} be public primes such that $\prod_{i=1}^{k} p_{i}<N$
■ Let $m=m_{1}, m_{2}, \ldots, m_{\ell k}$ be message, $m_{i} \in\{0,1\}$

- $x_{0}=1$

■ $x_{1}=x_{0}^{2}\left(p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}\right) \bmod N$

- $x_{j+1}=x_{j}^{2} \prod_{i=1}^{k} p_{i}^{m_{j k+i}} \bmod N$
- $\operatorname{Hash}(m)=x_{\ell}$
- based on the problem of finding small vectors in lattices
Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions

Block cipher - family of permutations

■ e: $\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$,
$m=\kappa+n>n$
■ each κ-bit key specifies bijective mapping on n bits
■ must hold for all x and k that $e_{k}^{-1}\left(e_{k}(x)\right)=x$.

- one-way function: given x and $e_{k}(x)$, hard to find k.

- e most often some layers of substitutions and permutations

■ example. SP-networks, 's' for substitution, ' p ' for permutation.

$$
e_{k}(x)=s_{k} \circ p_{k} \circ s_{k} \circ p_{k} \circ \ldots \circ s_{k} \circ p_{k} \circ s_{k}(x)
$$

■ note that s_{k} and p_{k} must be invertible.

DES \& AES

DES = Data Encryption Standard
AES $=$ Advanced Encryption Standard

system	year	block size	key size
DES	1977	64	56
AES	2001	128	128,192 or 256

Hash function using a block cipher

Why build on a block cipher?

- Advantages:
- use existing technology
- transfer security (trust?!) to hash construction
- Disadvantages:
- if "keys" change often, schemes slow (due to key-schedules)
- weaknesses of block cipher not relevant for encryption

Given hash function built from block cipher

$$
e:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Rate is defined as

$$
\frac{\# n \text {-bit blocks hashed }}{\# \text { invocations of } e}
$$

Single block hash (Rabin)

$e:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- rate $=\kappa / n$

■ one-way: no, given h_{i} easy to find $\left(m_{i}, h_{i-1}\right)$

- attacker has full control over block cipher key
$e:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- x_{0} fixed block
- rate $=(\kappa-n) / n$
- one-wayness: given h_{i}, hard to find ($m_{i} \mid h_{i-1}$)
- collision resistance ??
$\begin{array}{llll}\text { Introduction } & \text { Iterated hash functions } & \text { Based on number-theoretic problems } & \text { Block cipher constructions }\end{array}$

Single block hash

■ e: $\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
■ 12 secure ones (Preneel 93, Black et al 2002), here three

$$
\begin{array}{rrr}
h_{i} & =e_{m_{i}}\left(h_{i-1}\right) \oplus h_{i-1} & \text { Davies-Meyer } \\
h_{i} & =e_{h_{i-1}}\left(m_{i}\right) \oplus m_{i} & \text { Matyas-Meyer-Oseas } \\
h_{i} & =e_{h_{i-1}}\left(m_{i}\right) \oplus m_{i} \oplus h_{i-1} & \text { Preneel-Miyaguchi }
\end{array}
$$

■ Hash rates. First one: κ / n, next two: 1

- Collisions (birthday attack) in $2^{\text {n/2 }}$ operations
- Insufficient if e is DES or AES

Many hash functions have Davies-Meyer form

■ Examples: MD4, MD5, SHAs

- Pros and cons of Davies-Meyer

■ Fixed points easy:

$$
h_{i}=e_{m_{i}}\left(h_{i-1}\right) \oplus h_{i-1}
$$

Choose arbitrary m_{i}, set $h_{i-1}:=d_{m_{i}}(0)$. Then

$$
h_{i}=h_{i-1}
$$

Not possible in Matyas-Meyer-Oseas and Preneel-Miyaguchi

- Hash rates for Davies-Meyer can be (arbitrarily) high

Double block hash

- Based on e: $\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- Length of hash, $2 n$ bits
- Aim: 2^{n} security level for collisions
- MDC-2, Brachtl, Coppersmith et al 1988/1990

■ PBGV, QG, LOKI-DBH,
■ Parallel-DM, 1993
■ Nandi, Hirose, 2005

MDC-2, MDC-4

- designed for DES
- initial values
$h_{0}^{1}=\{0 \times 5252525252525252\}, h_{0}^{2}=\{0 \times 2525252525252525\}$.
- from text to key:

$$
\phi_{1}(\cdot), \phi_{2}(\cdot):\{0,1\}^{64} \rightarrow\{0,1\}^{56}
$$

- $\phi_{1}(x), \phi_{2}(y)$ never weak DES keys for any x, y
- hash rate $1 / 2$

■ MDC-4: variant using four encryptions per block

MCD-2 and MDC-4 used with DES
(Best known attacks)

	MDC-2	MDC-4
Preimage attack	2^{83}	2^{109}
2nd preimage attack	2^{83}	2^{109}
Collision attack	2^{55}	2^{56}
Hash rate	$1 / 2$	$1 / 4$

Parallel-DM, hash rate 1 - Lai et al (Crypto 93)

A large class of rate 1 hash functions

Consider the double block hash constructions

$$
\begin{aligned}
h_{i}^{1} & =e_{A}(B) \oplus C \\
h_{i}^{2} & =e_{D}(E) \oplus F
\end{aligned}
$$

where A, B, C linear combinations of $m_{i}^{1}, m_{i}^{2}, h_{i-1}^{1}$, and h_{i-1}^{2}, D, E, F are linear combinations of $h_{i}^{1}, m_{i}^{1}, m_{i}^{2}, h_{i-1}^{1}$, and h_{i-1}^{2}

- Knudsen-Lai (1993): preimages for all schemes in 2^{n}

■ Knudsen-Lai-Preneel (1994-5): collisions $2^{n / 2}$ or $2^{3 n / 4}$

- Ideal security not obtained by any schemes of above form

Abreast-DM \& Tandem-DM - Lai, Massey 1990

$$
e:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \kappa>n \quad f(x, y)=e_{x}(y) \oplus y
$$

Abreast-DM scheme: $\quad\left\{\begin{array}{l}h_{i}^{1}=f\left(h_{i-1}^{2} \| m_{i}, h_{i-1}^{1}\right) \\ h_{i}^{2}=f\left(m_{i} \| h_{i-1}^{1}, \bar{h}_{i-1}^{2}\right)\end{array}\right.$
where \bar{h} is bitwise complement of h.
Tandem-DM scheme: $\quad\left\{\begin{array}{l}h_{i}^{1}=f\left(h_{i-1}^{2} \| m_{i}, h_{i-1}^{1}\right) \\ h_{i}^{2}=f\left(m_{i} \|\left(h_{i}^{1} \oplus h_{i-1}^{1}\right), h_{i-1}^{2}\right)\end{array}\right.$
Both hash rate $1 / 2$, conjectured security level for collisions 2^{n}

- Compression function built from:
- error-correcting codes
- t small secure compression functions f_{i}
- Split input into small blocks, expand using code
- Different arguments to at least d of the t subfunctions

■ Size of hash larger than security level
■ Needs output transformation

Compress: $\left(h_{i-1}^{1}, \ldots, h_{i-1}^{5}, m_{i}\right) \rightarrow\left(h_{i}^{1}, \ldots, h_{i}^{5}\right)$
$h_{i}^{1}=f_{1}\left(h_{i-1}^{1}, h_{i-1}^{2}\right)$
$h_{i}^{2}=f_{2}\left(h_{i-1}^{3}, h_{i-1}^{4}\right)$
$h_{i}^{3}=f_{3}\left(h_{i-1}^{5}, m_{i}\right)$
$h_{i}^{4}=f_{4}\left(h_{i-1}^{1} \oplus h_{i-1}^{3} \oplus h_{i-1}^{5}, h_{i-1}^{2} \oplus h_{i-1}^{4} \oplus m_{i}\right)$
$h_{i}^{5}=f_{5}\left(h_{i-1}^{1} \oplus h_{i-1}^{3} \oplus h_{i-1}^{4} \oplus m_{i}, h_{i-1}^{2} \oplus h_{i-1}^{3} \oplus h_{i-1}^{5} \oplus m_{i}\right)$
Constructed from $[5,3,3]$ Hamming code over $\operatorname{GF}\left(2^{2}\right)$: rate $1 / 5$
Claimed security against collision attacks is 2^{n}
Higher rates by using codes over larger fields

Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions

Ideal cipher model

- Let $B_{n, k}$ be all block ciphers with a k-bit key and n-bit blocks,

$$
\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

- There are $2^{n}!\approx 2^{n 2^{n}}$ bijections on n bits
- It holds that

$$
\left|B_{n, k}\right|=\binom{2^{n}!}{2^{k}}
$$

- An ideal cipher is randomly selected from $B_{n, k}$

Ideal cipher model ? !

- proofs in model give protection against generic attacks
- no real-life cipher is an ideal cipher
- "nearly ideal" cipher can be strong for encryption but very weak when used for hashing
- attacker in control of key, can invest time in finding key(s) with certain properties

■ DES, weak keys, semi-weak keys

- SHACAL-1:
- block cipher built from SHA-1
- 160-bit blocks, 512-bit keys
- best known attacks today:
key-recovery attack on SHACAL-1 has complexity $\approx 2^{500}$ collision attack on SHA-1 has complexity $\approx 2^{60}$

Nandi et al, 2005

Variant based on block cipher with $\kappa=2 n$

$$
e:\{0,1\}^{2 n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Yields compression function

$$
h:\{0,1\}^{4 n} \rightarrow\{0,1\}^{2 n}
$$

With $\kappa=2 n$, construction has rate $2 / 3$
Knudsen-Muller, 2005

- collision in $2^{2 n / 3}$, preimages in time 2^{n}
- truncation to $2 s$ bits: collisions in $2^{2 s / 3}$, preimages in 2^{s}

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions

Hirose's double block mode 2006
$e:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \kappa>n, c$ nonzero constant

$$
\begin{aligned}
& h_{i}^{1}=e_{h_{i-1}^{2} \mid m_{i}}\left(h_{i-1}^{1}\right) \oplus h_{i-1}^{1} \\
& h_{i}^{2}=e_{h_{i-1}^{2} \mid m_{i}}\left(h_{i-1}^{1} \oplus c\right) \oplus h_{i-1}^{1} \oplus c
\end{aligned}
$$

- Hash rate is $(\kappa-n) / 2 n$

■ Collision requires 2^{n} operations assuming $e(\cdot, \cdot)$ is ideal cipher
With AES-256 (128-bit block, 256-bit key), one gets hash rate $1 / 2$ and security level 2^{128} for collisions
$\begin{array}{llll}\text { Introduction Iterated hash functions } & \text { Based on number-theoretic problems } & \text { Block cipher constructions }\end{array}$
Hirose's double block mode, figure

Whirlpool - Barreto, Rijmen, 2003

Daemen-style hash constructions

- Based on 512-bit, 10 -round block cipher W with a 512-bit key

■ Preneel-Miyaguchi scheme:

$$
h_{i}=W_{h_{i-1}}\left(m_{i}\right) \oplus m_{i} \oplus h_{i-1}
$$

■ W built in AES-style, 8 by 8 byte-matrix state, diffusion layer from MDS code

■ ISO/IEC 10118-3:2004

- Iterated hash functions
- Compression function invertible or not hard to invert
- Invertible compression function \leadsto meet-in-the-middle preimage attack with birthday attack complexity

■ Cellhash, Subhash. Daemen 1991, 1992

- Radiogatun. Daemen, Peeters, Van Assche 2006

■ Grindahl. Knudsen, Rechberger, Thomsen 2007

Concluding remarks

- 1980s: Hash functions based on block ciphers
- 1990s:
- Dedicated, faster hash functions (Rivest-kickoff)

■ Many broken block cipher based hash function proposals

- 2000s:

■ Many dedicated schemes have been broken in later years
■ Many new constructions
■ Future designs more conservative? (thereby slower?)
■ Renaissance of block cipher based proposal?

