Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions	Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions
				1 In	troduction		
	On the De	sign of Hash Function	าร				
				2 Ite	erated hash functior	15	
		Lars R. Knudsen					
				3 Ba	ased on number-the	oretic problems	
		May 8, 2007			ock cipher construc	tions	
					oek eipher construc	1013	
			1 / 43				2 / 43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Damgård and Merkle (1989)	Generic attacks
Build $H : \{0,1\}^* \to \{0,1\}^n$ from $h : \{0,1\}^m \to \{0,1\}^n$, $m > n$	For $H: \{0,1\}^* \to \{0,1\}^n$ and $h: \{0,1\}^m \to \{0,1\}^n$, $m > n$
1 apply padding such that $x = x_1 \dots x_{t-1}$ and x_{t-1} full block 2 append to x integer $t - 1$ as a string, $x = x_1 \dots x_{t-1} x_t$ 3 define $h_0 = IV$ and $h_i = h(h_{i-1} x_i)$ for $1 \le i \le t$ 4 define $H(x) = h_t$	attackrough complexitycollisions $\sqrt{2^n} = 2^{n/2}$ 2nd preimages 2^n preimage 2^n Goal: generic attacks are best (known) attacks
Theorem : collision for $H \Rightarrow$ collision for h	6/43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Based on number-theoretic problems (2)	Based on number-theoretic problems (3)
 Pfitzmann, Van Heijst Public primes: p, q = p-1/2, s.t. DLP(p) is hard Public primitive elements of Z_p: α, β (randomly chosen) h: Z_q × Z_q → Z[*]_p h(x, y) = α^xβ^y mod p Find a collision for h ⇒ compute log_α(β) 	 Goldwasser, Micali, Rivest N = pq, p ≠ q, large primes, a₀, a₁ random squares modulo N Public: N, a₀, a₁ h: {0,1} × Z_N[*] → Z_N[*] h(b, y) = y² a₀^b a₁^{1-b} mod N Collision gives x, x' such that x² = x'² mod N → factoring More efficient variants with more squares a₀,, a_k, Damgård

Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions	Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions
Based o	on number-theo	retic problems (4)		Numbe	r-theoretic hash	functions	
	$N = pq, p \neq q$, larg $MASH-1$ (Modular $h_i = ((m_i + m_i) + 1)$ m_i : 4 most signification 1111 (last byte 1) MASH-2: replace ex- Claims : preimages + Both in ISO/IEC 10	The primes Arithmetic Secure Hash) $\oplus h_{i-1} \lor a >^2 \pmod{N} \oplus$ Int bits in every byte are red 010), $a = 0 \pm 0 \pm 0 \dots 00$ exponent 2 by $2^8 + 1$ $\sqrt{N} = N^{1/2}$, collisions $\sqrt{\sqrt{N}}$ 118-4:1998	h_{i-1} undant: equal $\overline{ extsf{N}}= extsf{N}^{1/4}$		most schemes slow, signature schemes some schemes have (may interact badly open problem to dev function	e.g., no real speed-up for u unfortunate algebraic prope with other public-key algor vise efficient "provably" sec	use in digital erties ithms) eure hash
			11 / 43				12 / 43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Block cipher - family of permutations	Product ciphers
■ $e: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$, $m = \kappa + n > n$ ■ each κ -bit key specifies bijective mapping on n bits ■ must hold for all x and k that $e_k^{-1}(e_k(x)) = x$. ■ one-way function: given x and $e_k(x)$, hard to find k . k k k k k k k k k k	 e most often some layers of substitutions and permutations example. SP-networks, 's' for substitution, 'p' for permutation. e_k(x) = s_k ∘ p_k ∘ s_k ∘ p_k ∘ ∘ s_k ∘ p_k ∘ s_k(x) note that s_k and p_k must be invertible.

Introduction	Iterated hash fi	unctions Base	ed on number-theoretic problems	Block cipher constructions	Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions
DES & /	AES				Hash fu	nction using a b	olock cipher	
DES = AES =	= Data Enci = Advanced	ryption Stand Encryption S	dard Standard		Why I	build on a block cip Advantages: ■ use existing techr	her? 10logy	
syste	m year	block size	key size			transfer security ((trust?!) to hash construction	
DES AES	1977 2001	64 128	56 128, 192 or 256		• [Disadvantages: if "keys" change weaknesses of blo	often, schemes slow (due to ke ock cipher not relevant for ence	≥y-schedules) ryption
				17 / 43				18 / 43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Many hash functions have Davies-Meyer form	Double block hash
 Examples: MD4, MD5, SHAs Pros and cons of Davies-Meyer Fixed points easy: h_i = e_{mi}(h_{i-1}) ⊕ h_{i-1} Choose arbitrary m_i, set h_{i-1} := d_{mi}(0). Then h_i = h_{i-1}. Not possible in Matyas-Meyer-Oseas and Preneel-Miyaguchi Hash rates for Davies-Meyer can be (arbitrarily) high 	 Based on e: {0,1}^κ × {0,1}ⁿ → {0,1}ⁿ Length of hash, 2n bits Aim: 2ⁿ security level for collisions MDC-2, Brachtl, Coppersmith et al 1988/1990 PBGV, QG, LOKI-DBH, Parallel-DM, 1993 Nandi, Hirose, 2005

Introduction Iterated hash functions Based on	number-theoretic problems	Block cipher constructions	Introduction	Iterated hash functions	Based on number-theoretic problems	Block cipher constructions
MCD-2 and MDC-4 used with	DES		Parallel-	DM, hash rate	1 - Lai et al (Crypto 93)	
(Best known attacks) Preimage attack 2nd preimage attack Collision attack Hash rate	MDC-2 MD 2 ⁸³ 2 ¹ 2 ⁸³ 2 ¹ 2 ⁵⁵ 2 1/2 1	C-4 09 09 66 /4 27/43		$h_{i-1}^{1} \xrightarrow{\qquad} h_{i-1}^{2} \xrightarrow{\qquad} h_{i-1}^{2}$	$e \rightarrow h_i^1$ $e \rightarrow h_i^2$	28 / 43

A large class of rate 1 hash functions Al	breast-DM & Tandem-DM - Lai, Massey 1990
Consider the double block hash constructions $h_i^1 = e_A(B) \oplus C$ $h_i^2 = e_D(E) \oplus F$ where A, B, C linear combinations of m_i^1, m_i^2, h_{i-1}^1 , and h_{i-1}^2 , D, E, F are linear combinations of $h_i^1, m_i^1, m_i^2, h_{i-1}^1$, and h_{i-1}^2 • Knudsen-Lai (1993): preimages for all schemes in 2^n • Knudsen-Lai-Preneel (1994-5): collisions $2^{n/2}$ or $2^{3n/4}$ • Ideal security not obtained by any schemes of above form	$e: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}, \kappa > n \qquad f(x,y) = e_{x}(y) \oplus y$ Abreast-DM scheme: $\begin{cases} h_{i}^{1} = f(h_{i-1}^{2} \parallel m_{i}, h_{i-1}^{1}) \\ h_{i}^{2} = f(m_{i} \parallel h_{i-1}^{1}, \overline{h}_{i-1}^{2}) \end{cases}$ where \overline{h} is bitwise complement of h . Tandem-DM scheme: $\begin{cases} h_{i}^{1} = f(h_{i-1}^{2} \parallel m_{i}, h_{i-1}^{1}) \\ h_{i}^{2} = f(m_{i} \parallel (h_{i}^{1} \oplus h_{i-1}^{1}), h_{i-1}^{2}) \end{cases}$ Both hash rate 1/2, conjectured security level for collisions 2^{n}

29 / 43

Knudsen-Preneel 1996Knudsen-Preneel, example $f_i(x, y) = e_x(y) \oplus y$ • Compression function built from: • error-correcting codes • t small secure compression functions f_i Compress: $(h_{i-1}^1, \dots, h_{i-1}^5, m_i) \to (h_i^1, \dots, h_i^5)$ • Split input into small blocks, expand using code • Different arguments to at least d of the t subfunctions • Size of hash larger than security level • Needs output transformationCompress: $(h_{i-1}^1, \dots, h_{i-1}^5, m_i) \to (h_i^1, \dots, h_i^5)$ • Compression functions f_i • $h_i^2 = f_2(h_{i-1}^3, h_{i-1}^2)$ $h_i^2 = f_2(h_{i-1}^3, h_{i-1}^2)$ • $h_i^2 = f_2(h_{i-1}^3, h_{i-1}^2)$ $h_i^3 = f_3(h_{i-1}^5, m_i)$ • $h_i^5 = f_5(h_{i-1}^1 \oplus h_{i-1}^3 \oplus h_{i-1}^4 \oplus m_i, h_{i-1}^2 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^3 \oplus h_{i-1}^2 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^5 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^3 \oplus h_{i-1}^2 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^5 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^5 \oplus h_{i-1}^5 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^5$	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Compression function built from: a error-correcting codes a t small secure compression functions f_i Split input into small blocks, expand using code Different arguments to at least d of the t subfunctions Size of hash larger than security level Needs output transformation Compress: $(h_{i-1}^1, \dots, h_{i-1}^5)$ $h_i^1 = f_1(h_{i-1}^1, h_{i-1}^2)$ $h_i^2 = f_2(h_{i-1}^3, h_{i-1}^4)$ $h_i^3 = f_3(h_{i-1}^5, m_i)$ $h_i^5 = f_5(h_{i-1}^1 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus h_{i-1}^2 \oplus h_{i-1}^3 \oplus h_{i-1}^5 \oplus m_i)$ Constructed from [5, 3, 3] Hamming code over GF(2 ²): rate 1/5 Claimed security against collision attacks is 2 ⁿ Higher rates by using codes over larger fields	Knudsen-Preneel 1996	Knudsen-Preneel, example $f_i(x,y) = e_x(y) \oplus y$
31 / 43 32 /	 ecompression function built from: error-correcting codes t small secure compression functions f; Split input into small blocks, expand using code Different arguments to at least d of the t subfunctions Size of hash larger than security level Needs output transformation 	Compress: $(h_{i-1}^{1}, \dots, h_{i-1}^{5}, m_{i}) \rightarrow (h_{i}^{1}, \dots, h_{i}^{5})$ $h_{i}^{1} = f_{1}(h_{i-1}^{1}, h_{i-1}^{2})$ $h_{i}^{2} = f_{2}(h_{i-1}^{3}, h_{i-1}^{4})$ $h_{i}^{3} = f_{3}(h_{i-1}^{5}, m_{i})$ $h_{i}^{4} = f_{4}(h_{i-1}^{1} \oplus h_{i-1}^{3} \oplus h_{i-1}^{5}, h_{i-1}^{2} \oplus h_{i-1}^{4} \oplus m_{i})$ $h_{i}^{5} = f_{5}(h_{i-1}^{1} \oplus h_{i-1}^{3} \oplus h_{i-1}^{4} \oplus m_{i}, h_{i-1}^{2} \oplus h_{i-1}^{3} \oplus h_{i-1}^{5} \oplus m_{i})$ Constructed from [5, 3, 3] Hamming code over GF(2 ²): rate 1/5 Claimed security against collision attacks is 2 ⁿ Higher rates by using codes over larger fields

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Ideal cipher model	Merkle's double block schemes with DES (1989)
 Let B_{n,k} be all block ciphers with a k-bit key and n-bit blocks, {0,1}^k × {0,1}ⁿ → {0,1}ⁿ There are 2ⁿ! ≈ 2^{n2ⁿ} bijections on n bits It holds that B_{n,k} = (2ⁿ!)/(2^k) An ideal cipher is randomly selected from B_{n,k} 	<pre>proof of security in ideal cipher model best rate about 1/4, inconvenient block sizes collisions $\approx 2^{55}$ simplest scheme (rate $\simeq 1/18$): $h_i = \operatorname{chop}_{16} [f(0 h_{i-1}^1, h_{i-1}^2 m_i) f(1 h_{i-1}^1, h_{i-1}^2 m_i)]$. $f(x, y) = e_x(y) \oplus y$ $h_{i-1} = (h_{i-1}^1 h_{i-1}^2),$ $h_{i-1}^1 = 55, h_{i-1}^2 = 57, m_i = 7$</pre>
33 / 43	34/43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Ideal cipher model ? !	ldeal cipher model, cont.
 proofs in model give protection against generic attacks no real-life cipher is an ideal cipher "nearly ideal" cipher can be strong for encryption but very weak when used for hashing attacker in control of key, can invest time in finding key(s) with certain properties 	 DES, weak keys, semi-weak keys SHACAL-1: block cipher built from SHA-1 160-bit blocks, 512-bit keys best known attacks today: key-recovery attack on SHACAL-1 has complexity ≈ 2⁵⁰⁰ collision attack on SHA-1 has complexity ≈ 2⁶⁰
35 / 43	36 / 43

Nandi et al, 2005

Variant based on block cipher with $\kappa=2n$

$$e: \{0,1\}^{2n} \times \{0,1\}^n \to \{0,1\}^n$$

Yields compression function

$$h: \{0,1\}^{4n} \to \{0,1\}^{2n}$$

With $\kappa = 2n$, construction has rate 2/3

Knudsen-Muller, 2005

- collision in $2^{2n/3}$, preimages in time 2^n
- \blacksquare truncation to 2s bits: collisions in $2^{2s/3},$ preimages in 2^s

38 / 43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Hirose's double block mode 2006	Hirose's double block mode, figure
$e: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}, \kappa > n, c \text{ nonzero constant}$ $h_{i}^{1} = e_{h_{i-1}^{2} \mid m_{i}} (h_{i-1}^{1}) \oplus h_{i-1}^{1}$ $h_{i}^{2} = e_{h_{i-1}^{2} \mid m_{i}} (h_{i-1}^{1} \oplus c) \oplus h_{i-1}^{1} \oplus c$	$h_{i-1}^{1} \xrightarrow{e} h_{i}^{1}$ $m_{i} \mid h_{i-1}^{2} $
• Hash rate is $(\kappa - n)/2n$	
Collision requires 2^n operations assuming $e(\cdot, \cdot)$ is ideal cipher	$e \rightarrow \psi \rightarrow n_i$
 With AES-256 (128-bit block, 256-bit key), one gets hash rate 1/2 and security level 2¹²⁸ for collisions 	
39 / 43	40 / 43

Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions	Introduction Iterated hash functions Based on number-theoretic problems Block cipher constructions
Whirlpool - Barreto, Rijmen, 2003	Daemen-style hash constructions
 Based on 512-bit, 10-round block cipher W with a 512-bit key Preneel-Miyaguchi scheme: h_i = W_{hi-1}(m_i) ⊕ m_i ⊕ h_{i-1} W built in AES-style, 8 by 8 byte-matrix state, diffusion layer from MDS code ISO/IEC 10118-3:2004 	 Iterated hash functions Compression function invertible or not hard to invert Invertible compression function ~> meet-in-the-middle preimage attack with birthday attack complexity Cellhash, Subhash. Daemen 1991, 1992 Radiogatun. Daemen, Peeters, Van Assche 2006 Grindahl. Knudsen, Rechberger, Thomsen 2007

Concluding remarks

- 1980s: Hash functions based on block ciphers
- 1990s:
 - Dedicated, faster hash functions (Rivest-kickoff)
 - Many broken block cipher based hash function proposals
- **2000s**:
 - Many dedicated schemes have been broken in later years
 - Many new constructions
- Future designs more conservative? (thereby slower?)
- Renaissance of block cipher based proposal?

43 / 43

Block cipher construction