# Differential Cryptanalysis for Multivariate Schemes II 

Jacques Stern<br>Joint work with<br>Vivien Dubois, Pierre-Alain Fouque and Adi Shamir

Ecole normale supérieure, Paris

## Multivariate Schemes

- A family of asymmetric schemes
- Hard problems involve MQ polynomials over a finite field $\mathbb{F}_{q}$
- e.g. solving an MQ system is NP-hard and currently requires exponential time and memory on average

The Generic Multivariate Construction

- Hiding an easily invertible function using linear transforms

$$
\boldsymbol{P}=T \circ P \circ S
$$

- Schemes differ from the type of easy function embedded

Famous Examples of Multivariate Schemes

- C* [MI88] (broken by Patarin in 95)
- HFE [Pat96]
- SFLASH [PGC01] selected by NESSIE for fast signatures


## FGS05 : Differential Cryptanalysis for Multivariate Schemes

The differential of a quadratic function $P$ at $a$ is :

$$
D P(a, x)=P(a+x)-P(x)-P(a)+P(0)
$$

- $D P$ is bilinear in $(a, x)$
- If $\boldsymbol{P}=T \circ P \circ S$ then $D \boldsymbol{P}=T \circ D P(S, S)$

Consider linear properties of the pointwise differential $\operatorname{DP}(a, \cdot)$ e.g. the dimension of the kernel, intersections etc...

- New cryptanalysis of $C^{*}$, cryptanalysis of PMI [D04,FGS05]
- A quasipolynomial distinguisher for HFE [DGS06]
- Cryptanalysis of IPHFE [DGS07]


## A New Approach

- Functional properties of the differential seen as a bilinear map. e.g. we consider skew-symmetric maps $M$ w.r.t $D P$ :

$$
D P(M(a), x)+D P(a, M(x))=0
$$

- Cryptanalysis of SFLASH and other $C^{*-}$ schemes


## Description of SFLASH

- SFLASH belongs to the family of $C^{*-}$ schemes [PGC98]
- C*- schemes are $C^{*}$ schemes with a truncated public key


## Construction of a $C^{*-}$ scheme

$(n, \theta, r)$ are the parameters of the scheme
(1) Generate a $C^{*}$ with parameters $(n, \theta): P(x)=x^{1+q^{\theta}}$
(2) Remove the last $r$ polynomials from the public key

$$
T \circ P \circ S=\left\{\begin{array} { c } 
{ \boldsymbol { p } _ { 1 } ( x _ { 1 } , \ldots , x _ { n } ) } \\
{ \vdots } \\
{ \vdots } \\
{ \boldsymbol { p } _ { n } ( x _ { 1 } , \ldots , x _ { n } ) }
\end{array} \quad \stackrel { \sqcap } { \longmapsto } \left\{\begin{array}{c}
\boldsymbol{p}_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
\boldsymbol{p}_{n-r}\left(x_{1}, . ., x_{n}\right)
\end{array}=\Pi \circ \boldsymbol{P}\right.\right.
$$

## Signing with a $C^{*-}$ scheme

(1) Append $r$ random bits $k$ to the message $m$ to be signed
(2) Find a preimage $\sigma$ of $(m, k)$ by $\boldsymbol{P}=T \circ P \circ S$
(3) $\sigma$ is a valid signature since $\Pi \circ \boldsymbol{P}(\sigma)=m$

## Choosing Parameters

- $\operatorname{gcd}\left(q^{\theta}+1, q^{n}-1\right)=1$ for $C^{*}$ bijectivity. This condition is equivalent to $n / d$ odd where $d=\operatorname{gcd}(n, \theta)$
- $q^{r} \geq 2^{80}$ to avoid a possible recomposing attack from [PGC98]


## Proposed parameters

|  | $q$ | $n$ | $\theta$ | $d$ | $r$ | Length | PubKey Size |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLASH | $2^{8}$ | 29 | 11 | 1 | 11 | 296 bits | 18 Ko |
| SFLASHv2 [NESSIE] | $2^{7}$ | 37 | 11 | 1 | 11 | 259 bits | 15 Ko |
| SFLASHv3 | $2^{7}$ | 67 | 33 | 1 | 11 | 469 bits | 112 Ko |

## Basic Strategy

- A recomposing attack using a family $\mathcal{F}$ of linear commuting maps. For any $M$ in $\mathcal{F}$, there exists $N$ in $\mathcal{F}$ such that

$$
P \circ M=N \circ P
$$

[Not obvious since $P$ is quadratic]. Let $M=S^{-1} \circ M \circ S$

$$
\begin{aligned}
(\Pi \circ T \circ P \circ S) \circ \boldsymbol{M} & =\Pi \circ T \circ(P \circ M) \circ S \\
& =\Pi \circ T \circ(N \circ P) \circ S \\
& =(\Pi \circ T \circ N) \circ P \circ S
\end{aligned}
$$

Use of $M$ recovers enough coordinates of the public key:

$$
\left.\begin{array}{r}
(\Pi \circ T) \circ P \circ S \\
(\Pi \circ T \circ N) \circ P \circ S
\end{array}\right\} \longmapsto C^{*}
$$

- In $C^{*}$, multiplications $x \mapsto \xi . x$ are a commuting family.
- Goal : Discover maps $M$ where $M$ is a multiplication.


## Skew-symmetric Maps w.r.t the Differential

## Definition

$M$ is skew-symmetric with respect to the bilinear map $D P$ iff

$$
D P(M(a), x)+D P(a, M(x))=0
$$

## Theorem

When $P$ is the $C^{*}$ monomial $x^{1+q^{\theta}}$, the skew-symmetric maps w.r.t to $D P$ are multiplications by $\xi$ with $\xi+\xi^{q^{\theta}}=0$.

## Proof.

Since $M(x)=\sum_{k=0}^{n-1} \lambda_{k} q^{q^{k}}, D P(M(a), x)+D P(a, M(x))$ is written on the basis of monomials $a^{q^{\prime}} x^{q^{\prime}}$. Equaling to zero all coefficients gives the wanted condition. The converse is easily checked.

- Dimension of the space of skew-symmetric maps $=\operatorname{dim}(\operatorname{ker} L)$ where $L(\xi)=\xi+\xi^{q^{\theta}}$.

$$
\xi \neq 0, L(\xi)=0 \quad \Longleftrightarrow \quad \xi^{q^{\theta}-1}=1
$$

So : $\operatorname{dim}(\operatorname{ker} L)=d:=\operatorname{gcd}(n, \theta)$.

- Non-trivial maps only exist when $d>1$.
- Skew-symmetric maps w.r.t the $C^{*}$ public key $\boldsymbol{P}$ are :

$$
\boldsymbol{M}_{\xi}=S^{-1} \circ M_{\xi} \circ S \quad \text { where } \quad M_{\xi}(x)=\xi \cdot x
$$

- They can be recovered through linear algebra from :

$$
D \boldsymbol{P}(\boldsymbol{M}(a), x)+D \boldsymbol{P}(a, \boldsymbol{M}(x))=0
$$

which is a system of $\simeq n^{3}$ linear equations in $n^{2}$ unknowns: We might not need all coordinates of $\boldsymbol{P}$ to recover the $\boldsymbol{M}_{\xi}$ !

- If we are only given the first $n-r$ coordinates of $\boldsymbol{P}$ :

$$
\Pi \circ D \boldsymbol{P}(\boldsymbol{M}(a), x)+\Pi \circ D \boldsymbol{P}(a, \boldsymbol{M}(x))=0
$$

gives $(n-r) n(n-1) / 2$ linear equations in $n^{2}$ unknowns

- The skew-symmetric maps $\boldsymbol{M}_{\xi}$ are solutions.
- We expect no other solutions when :

$$
(n-r) \frac{n(n-1)}{2} \geq n^{2}-d
$$

- Hence, heuristically, the $\boldsymbol{M}_{\xi}$ are the only solutions up to :

$$
r_{\max }^{*}=n-\left\lceil 2 \frac{n^{2}-d}{n(n-1)}\right\rceil=n-3
$$

- The actual value $r_{\text {max }}$ is very close to the heuristical $r_{\text {max }}^{*}$ :

| $n$ | 36 | 36 | 38 | 39 | 39 | 40 | 42 | 42 | 44 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta$ | 8 | 12 | 10 | 13 | 9 | 8 | 12 | 14 | 12 |
| $d$ | 4 | 12 | 2 | 13 | 3 | 8 | 6 | 14 | 4 |
| $r_{\max }$ | 33 | 32 | 35 | 35 | 36 | 37 | 39 | 38 | 41 |

## In Brief

- The skew-symmetric maps can be recovered from as few as 3 or 4 coordinates of the public key.
- These maps form a subspace of dimension $d$ and some are non-trivial when $d>1$.


## Recovering a Full C* Public Key

Using a single non-trivial $\boldsymbol{M}_{\xi}$, up to $r=n / 2$
(1) We complete $\Pi \circ \boldsymbol{P}$ using $r$ coordinates of $\Pi \circ \boldsymbol{P} \circ \boldsymbol{M}_{\xi}$.
(2) We can check that this is a full $C^{*}$ public key since Patarin's attack works again.

| $n$ | 36 | 36 | 38 | 39 | 39 | 40 | 42 | 42 | 44 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta$ | 8 | 12 | 10 | 13 | 9 | 8 | 12 | 14 | 12 |
| $d$ | 4 | 12 | 2 | 13 | 3 | 8 | 6 | 14 | 4 |
| $r$ | 11 | 11 | 11 | 12 | 12 | 12 | 13 | 13 | 13 |
| $C^{*-} \mapsto C^{*}$ | $57 s$ | $57 s$ | $94 s$ | $105 s$ | $90 s$ | $105 s$ | $141 s$ | $155 s$ | $155 s$ |

Note : parameters are close to those of SFLASHv2, with the same $q=2^{7}$.

## Recovering a Full C* Public Key

## Using a whole basis of $\boldsymbol{M}_{\xi}$

Since we have $d(n-r)$ coordinates available, the overall bound is :

$$
r \leq \min \left\{r_{\max } ; n\left(1-\frac{1}{d}\right)\right\}
$$

| $n$ | 36 | 36 | 38 | 39 | 39 | 40 | 42 | 42 | 44 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta$ | 8 | 12 | 10 | 13 | 9 | 8 | 12 | 14 | 12 |
| $d$ | 4 | 12 | 2 | 13 | 3 | 8 | 6 | 14 | 4 |
| $r$ | 27 | $32^{*}$ | 19 | $35^{*}$ | 26 | 35 | 35 | $38^{*}$ | 33 |
| $C^{*-} \mapsto C^{*}$ | $65 s$ | $51 s$ | $112 s$ | $79 s$ | $107 s$ | $95 s$ | $134 s$ | $117 s$ | $202 s$ |

Note : the star symbol means $r=r_{\text {max }}$, and $r=n(1-1 / d)$ otherwise.

## Multiplicative Property of the Differential

- A more general property of multiplications:

$$
D P\left(M_{\xi}(a), x\right)+D P\left(a, M_{\xi}(x)\right)=M_{L(\xi)} \circ D P(a, x)
$$

where $M_{\xi}(x)=\xi . x$ and $L(\xi)=\xi+\xi^{q^{\theta}}$.

- Let us denote :

$$
S_{M}(a, x)=D P(M(a), x)+D P(a, M(x))
$$

- Coordinates of $S_{M}(a, x)$ and $D P(a, x)$ are bilin. symm. forms.
- Let us call $V$ the span of the coordinates of $\operatorname{DP}(a, x)$.
- Characterization of the $M_{\xi}$ : Any coordinate of $S_{M_{\xi}}$ is in $V$.


## Implications in the Public World

We are only given the first $(n-r)$ coordinates of $D \boldsymbol{P}$.

$$
\tilde{\boldsymbol{V}}=\operatorname{Span}\left(d \boldsymbol{p}_{1}, \ldots, d \boldsymbol{p}_{n-r}\right) \subseteq \boldsymbol{V}:=\operatorname{Span}(D \boldsymbol{P})
$$

We express partial conditions :
For a fixed coordinate $i$ among the first $(n-r)$, what is the dimension of solutions of the equation :

$$
S_{M}[i] \in \tilde{\boldsymbol{V}}
$$

- which are multiplications?
- in all?

Solutions which are multiplications

- For all $\boldsymbol{M}_{\xi}$ (an n-dimensional space) : $\quad \boldsymbol{S}_{\boldsymbol{M}_{\xi}}[i] \in \boldsymbol{V}$.
- Enforcing

$$
\boldsymbol{S}_{\boldsymbol{M}_{\xi}[i]} \in \tilde{\boldsymbol{V}}
$$

results in $r$ linear constraints.
The dimension of Multiplications is $n-r$

Overall solution space

- For a general $\boldsymbol{M}, \boldsymbol{S}_{\boldsymbol{M}}[i]$ is some vector of length $n(n-1) / 2$.
- Enforcing

$$
\boldsymbol{S}_{\boldsymbol{M}}[i] \in \tilde{\boldsymbol{V}}
$$

results in $n(n-1) / 2-(n-r)$ linear constraints.
The overall dimension of solutions is $n^{2}-(n(n-1) / 2-(n-r))$

- The overall dimension is lower-bounded by the dimension of multiplications, which itself contain those in $\operatorname{ker}(L)(d=1)$.
- The dimension of the solutions is :

$$
\max \left\{n^{2}-(n(n-1) / 2-(n-r)) ; n-r ; 1\right\}
$$

- More generally, for $k$ coordinates, this dimension is :

$$
\max \left\{n^{2}-k(n(n-1) / 2-(n-r)) ; n-k r ; 1\right\}
$$

## Recovering Non-Trivial Multiplications

$\operatorname{dim}($ Solutions $[k])=\max \left\{n^{2}-k(n(n-1) / 2-(n-r)) ; n-k r ; 1\right\}$

When $r \leq(n-2) / 3$

- At $k=3$, the first term is negative.
- Only multiplications are expected, with dimension :

$$
\max \{n-3 r ; 1\}
$$

- It contains non-trivial multiplications as soon as :

$$
n-3 r>1 \quad \Longleftrightarrow \quad r \leq \frac{n-2}{3}
$$

## When $r \leq(n-2) / 2$

- At $k=2$, the solution space has dimension :

$$
n^{2}-2(n(n-1) / 2-(n-r))=3 n-2 r \ll n^{2} / 2
$$

- The dimension of multiplications in it is : $n-2 r<\epsilon . n$.

We use sum and intersection to refine a multiplication subspace :

- Consider $k=\frac{1}{\epsilon}$ solutions spaces $E_{1}, \ldots, E_{k}$ for different pairs of coordinates.
- $\left(\sum_{k} E_{k}\right) \cap E_{k+1}$ contains only multiplications, and some are non-trivial when $r \leq(n-2) / 2$.


## Experimental Results

(1) Multiplications Recovery : for the 3 proposed schemes :

- SFLASHv2, FLASH : $r \simeq n / 3$
- SFLASHv3 : $r \simeq n / 6$
(2) Full $C^{*}$ recovery: works as for the first attack.
(3) Signature Forgery: uses Patarin's attack over $C^{*}$.

| $n$ | 37 | $\mathbf{3 7}$ | 67 | $\mathbf{6 7}$ | 131 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta$ | 11 | $\mathbf{1 1}$ | 33 | $\mathbf{3 3}$ | 33 |
| $q$ | 2 | $\mathbf{1 2 8}$ | 2 | $\mathbf{1 2 8}$ | 2 |
| $r$ | 11 | $\mathbf{1 1}$ | 11 | $\mathbf{1 1}$ | 11 |
| Mult. Recovery | 4 s | $\mathbf{7 0 s}$ | 1 m | $\mathbf{5 0 m}$ | 35 m |
| $C^{*}$ Recovery | 7.5 s | $\mathbf{2 2 s}$ | 2 m | $\mathbf{1 0 m}$ | 7 m |
| Forgery | 0.01 s | $\mathbf{0 . 5 s}$ | 0.02 s | $\mathbf{2 s}$ | 0.1 s |

Note : parameters in bold are those of SFLASHv2 and SFLASHv3.

