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Multivariate Schemes
@ A family of asymmetric schemes
@ Hard problems involve MQ polynomials over a finite field I

@ e.g. solving an MQ system is NP-hard and currently requires
exponential time and memory on average

The Generic Multivariate Construction
@ Hiding an easily invertible function using linear transforms

P=ToPoS

@ Schemes differ from the type of easy function embedded
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Famous Examples of Multivariate Schemes
e C* [MI88] (broken by Patarin in 95)
o HFE [Pat96]
o SFLASH [PGCO1] selected by NESSIE for fast signatures
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FGSO05 : Differential Cryptanalysis for Multivariate Schemes

The differential of a quadratic function P at a is :

DP(a,x) = P(a+ x) — P(x) — P(a) + P(0)

@ DP is bilinear in (a, x)
elf P=ToPoS then DP=ToDP(S,S)

Consider linear properties of the pointwise differential DP(a, -)
e.g. the dimension of the kernel, intersections etc...
e New cryptanalysis of C*, cryptanalysis of PMI [D04,FGS05]
@ A quasipolynomial distinguisher for HFE [DGSO06]
e Cryptanalysis of IPHFE [DGS07]




A New Approach

@ Functional properties of the differential seen as a bilinear map.
e.g. we consider skew-symmetric maps M w.r.t DP :

DP(M(a), x) + DP(a, M(x)) = 0

@ Cryptanalysis of SFLASH and other C*~ schemes
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Description of SFLASH

@ SFLASH belongs to the family of C*~ schemes [PGC98]

@ C*~ schemes are C* schemes with a truncated public key

Construction of a C*~ scheme

(n,0,r) are the parameters of the scheme
© Generate a C* with parameters (n, 6) : P(x) = x+9’
@ Remove the last r polynomials from the public key

p1(xt, ..., Xxn)
pi(x1, ..., xn)

ToPoS= — : =MoP

' pnfr(Xl’--aXn)
Po(x1,. .., %n)
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Signing with a C*~ scheme

Attack 2

© Append r random bits k to the message m to be signed

@ Find a preimage o of (m,k) by P=ToPoS

© o is a valid signature since Mo P(o) =m

Choosing Parameters

e gcd(q? +1,9" —1) =1 for C* bijectivity. This condition is
equivalent to n/d odd where d = ged(n, 0)

o g" > 280 t0 avoid a possible recomposing attack from [PGC98]

Proposed parameters

q n 0 | d| r Length | PubKey Size
FLASH 25129 [ 11 | 1 | 11 | 296 bits 18 Ko
SFLASHv2 [NESSIE] 27137 [ 11 | 1] 11 | 259 bits 15 Ko
SFLASHv3 2" 167 [ 33| 1 | 11 | 469 bits 112 Ko




Basic Strategy

@ A recomposing attack using a family F of linear commuting
maps. For any M in F, there exists N in F such that

PoM=NoP
[Not obvious since P is quadratic]. Let M =S 1oMo S

(MoToPoS)oM = MoTo(PoM)oS
= MNoTo(NoP)oS
= (MoToN)oPoS

Use of M recovers enough coordinates of the public key :

(I'IoT)oPoS}

(MoToN)yoPos [ €

@ In C*, multiplications x — £.x are a commuting family.
@ Goal : Discover maps M where M is a multiplication.
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Skew-symmetric Maps w.r.t the Differential

Definition
M is skew-symmetric with respect to the bilinear map DP iff

DP(M(a),x) + DP(a, M(x)) =0

Theorem

When P is the C* monomial x1+9° the skew-symmetric maps
w.r.t to DP are multiplications by & with £ + & ¢’ =0,

Proof.

Since M(x) = Y212 Akx9”, DP(M(a), x) + DP(a, M(x)) is written
on the basis of monomials a9 x% . Equaling to zero all coefficients
gives the wanted condition. The converse is easily checked. []




@ Dimension of the space of skew-symmetric maps = dim(ker L)
where L(£) = & + ¢9°.

E£0L(E) =0 = ¢ 1=1

So : dim(ker L) = d := gecd(n, 6).
@ Non-trivial maps only exist when d > 1.
@ Skew-symmetric maps w.r.t the C* public key P are :

Mg=S1oM:0S  where M(x)=¢Ex
@ They can be recovered through linear algebra from :
DP(M(a),x) + DP(a, M(x)) =0

which is a system of ~ n3 linear equations in n® unknowns :
We might not need all coordinates of P to recover the M !



@ If we are only given the first n — r coordinates of P :
Mo DP(M(a),x)+ Mo DP(a,M(x)) =0

gives (n — r)n(n — 1)/2 linear equations in n? unknowns
@ The skew-symmetric maps M, are solutions.

@ We expect no other solutions when :

(n—r)n(n;l)znz—d

@ Hence, heuristically, the M¢ are the only solutions up to :

2 _
Frax = N — [2”d—‘ =n-3
n(n—1)



@ The actual value rpyax is very close to the heuristical r},., :

n ||36]36]38|39|39|40 (42|42 |44
0 8 121013 | 9 | 8 |12 |14 |12
d 4 11212 (13| 3 (8|6 14| 4

| rmax || 33[32[35[35[36[37[39[38]41]

In Brief

@ The skew-symmetric maps can be recovered from as few as 3
or 4 coordinates of the public key.

@ These maps form a subspace of dimension d and some are
non-trivial when d > 1.
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Recovering a Full C* Public Key

Using a single non-trivial Mg, up to r = n/2
© We complete I1o P using r coordinates of 1o P o M.

@ We can check that this is a full C* public key since Patarin’s
attack works again.

36 | 36 | 38 39 39 40 42 42 44
8 12 | 10 13 9 8 12 14 12
4 12 2 13 3 8 6 14 4
11 | 11 | 11 12 12 12 13 13 13

[ C*~— C" [ 57s [ 575 | 94s [ 1055 | 90s | 105s | 141s | 1555 | 155s |

S| QDS

Note : parameters are close to those of SFLASHv2, with the same q = 2.




Preliminaries Description of SFLASH Attack 1 Attack 2 Skew-symmetric Maps Recovering a full public key

Recovering a Full C* Public Key

Using a whole basis of M,

Since we have d(n — r) coordinates available, the overall bound is :

1
< mi max 1——
rmm{r n< d)}

36 | 36 38 39 39 40 42 42 44
8 12 10 13 9 8 12 14 12
4 12 2 13 3 8 6 14 4
27 [ 32| 19 | 35" | 26 35 35 38" 33

[ C~ — C* ][ 65s [ 51s | 1125 [ 79s | 107s [ 95s | 134s [ 117s | 202s |

S| QDS

Note : the star symbol means r = rmax, and r = n(1 — 1/d) otherwise.
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Multiplicative Property of the Differential

A more general property of multiplications :
DP(M&(B),X) + DP(37 Mf(x)) = ML({) o DP(Q,X)

where Mg(x) = &.x and L(§) =¢ +¢.

Let us denote :

Sm(a, x) = DP(M(a), x) + DP(a, M(x))

(]

Coordinates of Sy (a, x) and DP(a, x) are bilin. symm. forms.

Let us call V the span of the coordinates of DP(a, x).

Characterization of the M : Any coordinate of Sy, isin V.
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Implications in the Public World

We are only given the first (n — r) coordinates of DP.

V= Span(dpy,...,dp,_,) < V := Span(DP)

We express partial conditions :

For a fixed coordinate i among the first (n — r), what is the
dimension of solutions of the equation :

S/\/l[i] S v

@ which are multiplications ?

@ inall?




Solutions which are multiplications
e For all M¢ (an n-dimensional space) :  Sm.[i] € V.

@ Enforcing 5
SME [I] evVv

results in r linear constraints.

The dimension of Multiplications is n — r

Overall solution space
e For a general M, Sp[i] is some vector of length n(n—1)/2.

e Enforcing y
SM[i] evVv

results in n(n — 1)/2 — (n — r) linear constraints.

The overall dimension of solutions is n?> — (n(n—1)/2 — (n—r))




@ The overall dimension is lower-bounded by the dimension of
multiplications, which itself contain those in ker(L) (d = 1).

@ The dimension of the solutions is :
max{n2 —(n(n—=1)/2=(n=r)); n—r; 1}
@ More generally, for k coordinates, this dimension is :

max {n® — k(n(n—1)/2—(n—r)); n—kr; 1}
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Recovering Non-Trivial Multiplications

dim(Solutions[k]) = max {n* — k(n(n—1)/2 = (n—r)) ; n—kr; 1}

When r < (n—2)/3
@ At k = 3, the first term is negative.

@ Only multiplications are expected, with dimension :
max {n —3r; 1}
@ It contains non-trivial multiplications as soon as :

n—2

n—3r>1 <<— r< 3
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Preliminaries Des

When r < (n—2)/2

@ At k = 2, the solution space has dimension :
n?>—2(n(n—1)/2 — (n—r)) =3n—2r < n?/2

@ The dimension of multiplications in it is : n — 2r < e.n.

We use sum and intersection to refine a multiplication subspace :

o Consider k = % solutions spaces Ej, ..., Ey for different pairs

of coordinates.
® (>4 Ex) N Ex41 contains only multiplications, and some are
non-trivial when r < (n—2)/2.
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Experimental Results

@ Multiplications Recovery : for the 3 proposed schemes :

o SFLASHv2, FLASH : r ~ n/3
o SFLASHV3 : r~n/6

@ Full C* recovery : works as for the first attack.

© Signature Forgery : uses Patarin’s attack over C*.

n 37 37 67 67 131

0 11 11 33 33 33

q 2 128 2 128 2

r 11 11 11 11 11
Mult. Recovery 4s 70s Im 50m 35m
C* Recovery 7.5s 22s 2m 10m 7m
Forgery 0.01s 0.5s 0.02s 2s 0.1s

Note : parameters in bold are those of SFLASHv2 and SFLASHv3.
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