Differential Cryptanalysis for Multivariate Schemes II

Jacques Stern

Joint work with Vivien Dubois, Pierre-Alain Fouque and Adi Shamir

Ecole normale supérieure, Paris

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Multivariate Schemes

- A family of asymmetric schemes
- Hard problems involve MQ polynomials over a finite field \mathbb{F}_q
- e.g. solving an MQ system is NP-hard and currently requires exponential time and memory on average

The Generic Multivariate Construction

• Hiding an easily invertible function using linear transforms

$$\boldsymbol{P}=T\circ \boldsymbol{P}\circ \boldsymbol{S}$$

• Schemes differ from the type of easy function embedded

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Famous Examples of Multivariate Schemes

- C* [MI88] (broken by Patarin in 95)
- HFE [Pat96]
- SFLASH [PGC01] selected by NESSIE for fast signatures

FGS05 : Differential Cryptanalysis for Multivariate Schemes The differential of a quadratic function P at a is :

$$DP(a,x) = P(a+x) - P(x) - P(a) + P(0)$$

• If $P = T \circ P \circ S$ then $DP = T \circ DP(S, S)$

Consider linear properties of the *pointwise* differential $DP(a, \cdot)$

- e.g. the dimension of the kernel, intersections etc...
 - New cryptanalysis of C*, cryptanalysis of PMI [D04,FGS05]
 - A quasipolynomial distinguisher for HFE [DGS06]
 - Cryptanalysis of IPHFE [DGS07]

イロト イヨト イヨト イヨ

A New Approach

• *Functional* properties of the differential seen as a bilinear map. e.g. we consider skew-symmetric maps *M* w.r.t *DP* :

$$DP(M(a), x) + DP(a, M(x)) = 0$$

• Cryptanalysis of SFLASH and other C^{*-} schemes

Description of SFLASH

- SFLASH belongs to the family of C^{*-} schemes [PGC98]
- C^{*-} schemes are C^* schemes with a truncated public key

Construction of a C^{*-} scheme

 (n, θ, r) are the parameters of the scheme

- Generate a C^* with parameters $(n, \theta) : P(x) = x^{1+q^{\theta}}$
- Remove the last r polynomials from the public key

$$T \circ P \circ S = \begin{cases} \boldsymbol{p}_1(x_1, \dots, x_n) \\ \vdots \\ \boldsymbol{p}_n(x_1, \dots, x_n) \end{cases} \xrightarrow{\Pi} \begin{cases} \boldsymbol{p}_1(x_1, \dots, x_n) \\ \vdots \\ \boldsymbol{p}_{n-r}(x_1, \dots, x_n) \end{cases} = \Pi \circ \boldsymbol{P}$$

< ロ > < 同 > < 回 > < 回 >

Signing with a C^{*-} scheme

- **(**) Append r random bits k to the message m to be signed
- **2** Find a preimage σ of (m, k) by $P = T \circ P \circ S$
- **(a)** σ is a valid signature since $\Pi \circ \boldsymbol{P}(\sigma) = m$

Choosing Parameters

- $gcd(q^{\theta} + 1, q^{n} 1) = 1$ for C^{*} bijectivity. This condition is equivalent to n/d odd where $d = gcd(n, \theta)$
- $q^r \ge 2^{80}$ to avoid a possible recomposing attack from [PGC98]

Proposed parameters

	q	n	θ	d	r	Length	PubKey Size
FLASH	2 ⁸	29	11	1	11	296 bits	18 Ko
SFLASHv2 [NESSIE]	27	37	11	1	11	259 bits	15 Ko
SFLASHv3	27	67	33	1	11	469 bits	112 Ko

Jacques Stern Differential Cryptanalysis for Multivariate Schemes II

・ロト ・ 一 マ ・ コ ト ・ 日 ト

3

Basic Strategy

• A recomposing attack using a family \mathcal{F} of linear commuting maps. For any M in \mathcal{F} , there exists N in \mathcal{F} such that

$$P \circ M = N \circ P$$

[Not obvious since P is quadratic]. Let $M = S^{-1} \circ M \circ S$

$$(\Pi \circ T \circ P \circ S) \circ \mathbf{M} = \Pi \circ T \circ (P \circ M) \circ S$$
$$= \Pi \circ T \circ (N \circ P) \circ S$$
$$= (\Pi \circ T \circ N) \circ P \circ S$$

Use of \boldsymbol{M} recovers enough coordinates of the public key :

$$\left. \begin{array}{c} (\Pi \circ T) \circ P \circ S \\ (\Pi \circ T \circ N) \circ P \circ S \end{array} \right\} \longmapsto C^*$$

- In C^* , multiplications $x \mapsto \xi . x$ are a commuting family.
- **Goal** : Discover maps **M** where M is a multiplication.

Skew-symmetric Maps w.r.t the Differential

Definition

M is skew-symmetric with respect to the bilinear map DP iff

$$DP(M(a), x) + DP(a, M(x)) = 0$$

Theorem

When P is the C^{*} monomial $x^{1+q^{\theta}}$, the skew-symmetric maps w.r.t to DP are multiplications by ξ with $\xi + \xi^{q^{\theta}} = 0$.

Proof.

Since $M(x) = \sum_{k=0}^{n-1} \lambda_k x^{q^k}$, DP(M(a), x) + DP(a, M(x)) is written on the basis of monomials $a^{q^i} x^{q^j}$. Equaling to zero all coefficients gives the wanted condition. The converse is easily checked.

4 日 ト 4 周 ト 4 国 ト 4 国 ト

 Dimension of the space of skew-symmetric maps = dim(ker L) where L(ξ) = ξ + ξ^{q^θ}.

$$\xi \neq 0, L(\xi) = 0 \quad \Longleftrightarrow \quad \xi^{q^{\theta}-1} = 1$$

So : dim(ker L) = $d := \operatorname{gcd}(n, \theta)$.

- Non-trivial maps only exist when d > 1.
- Skew-symmetric maps w.r.t the C* public key P are :

$$M_{\xi} = S^{-1} \circ M_{\xi} \circ S$$
 where $M_{\xi}(x) = \xi . x$

• They can be recovered through linear algebra from :

$$DP(M(a), x) + DP(a, M(x)) = 0$$

which is a system of $\simeq n^3$ linear equations in n^2 unknowns : We might not need all coordinates of **P** to recover the M_{ξ} !

• If we are only given the first n - r coordinates of **P** :

$$\Pi \circ D\boldsymbol{P}(\boldsymbol{M}(a), x) + \Pi \circ D\boldsymbol{P}(a, \boldsymbol{M}(x)) = 0$$

gives (n-r)n(n-1)/2 linear equations in n^2 unknowns

- The skew-symmetric maps M_{ξ} are solutions.
- We expect no other solutions when :

$$(n-r)\frac{n(n-1)}{2} \ge n^2 - d$$

• Hence, heuristically, the \pmb{M}_{ξ} are the only solutions up to :

$$r_{max}^* = n - \left\lceil 2\frac{n^2 - d}{n(n-1)} \right\rceil = n - 3$$

- 「同下」 (三下) (三下)

• The actual value r_{max} is very close to the heuristical r^*_{max} :

n	36	36	38	39	39	40	42	42	44
θ	8	12	10	13	9	8	12	14	12
d	4	12	2	13	3	8	6	14	4
r _{max}	33	32	35	35	36	37	39	38	41

In Brief

- The skew-symmetric maps can be recovered from as few as 3 or 4 coordinates of the public key.
- These maps form a subspace of dimension d and some are non-trivial when d > 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recovering a Full C^{*} Public Key

Using a single non-trivial M_{ξ} , up to r = n/2

- **(**) We complete $\Pi \circ \boldsymbol{P}$ using *r* coordinates of $\Pi \circ \boldsymbol{P} \circ \boldsymbol{M}_{\xi}$.
- We can check that this is a full C* public key since Patarin's attack works again.

n	36	36	38	39	39	40	42	42	44
θ	8	12	10	13	9	8	12	14	12
d	4	12	2	13	3	8	6	14	4
r	11	11	11	12	12	12	13	13	13
$C^{*-} \mapsto C^*$	57 <i>s</i>	57 <i>s</i>	94 <i>s</i>	105 <i>s</i>	90 <i>s</i>	105 <i>s</i>	141 <i>s</i>	155 <i>s</i>	155 <i>s</i>

Note : parameters are close to those of SFLASHv2, with the same $q = 2^7$.

- 4 同 1 4 三 1 4 三 1

Recovering a Full C^{*} Public Key

Using a whole basis of M_{ξ}

Since we have d(n-r) coordinates available, the overall bound is :

$$r \leq \min\left\{r_{max} ; n\left(1-\frac{1}{d}\right)
ight\}$$

n	36	36	38	39	39	40	42	42	44
θ	8	12	10	13	9	8	12	14	12
d	4	12	2	13	3	8	6	14	4
r	27	32*	19	35*	26	35	35	38*	33
$C^{*-} \mapsto C^*$	65 <i>s</i>	51 <i>s</i>	112 <i>s</i>	79 <i>s</i>	107 <i>s</i>	95 <i>s</i>	134 <i>s</i>	117 <i>s</i>	202 <i>s</i>

Note : the star symbol means $r = r_{max}$, and r = n(1 - 1/d) otherwise.

イロト イヨト イヨト

Multiplicative Property of the Differential

• A more general property of multiplications :

$$DP(M_{\xi}(a),x)+DP(a,M_{\xi}(x))=M_{L(\xi)}\circ DP(a,x)$$

where $M_{\xi}(x) = \xi \cdot x$ and $L(\xi) = \xi + \xi^{q^{\theta}}$.

• Let us denote :

1

$$S_M(a,x) = DP(M(a),x) + DP(a,M(x))$$

- Coordinates of $S_M(a, x)$ and DP(a, x) are bilin. symm. forms.
- Let us call V the span of the coordinates of DP(a, x).
- Characterization of the M_{ξ} : Any coordinate of $S_{M_{\xi}}$ is in V.

・ 同 ト ・ ヨ ト ・ ヨ ト

Implications in the Public World

We are only given the first (n - r) coordinates of DP.

$$ilde{oldsymbol{V}} = extsf{Span}(doldsymbol{p}_1,\ldots,doldsymbol{p}_{n-r}) \quad \subseteq \quad oldsymbol{V} := extsf{Span}(Doldsymbol{P})$$

We express partial conditions :

For a fixed coordinate *i* among the first (n - r), what is the dimension of solutions of the equation :

$$oldsymbol{S}_{oldsymbol{M}}[i]\in \widetilde{oldsymbol{V}}$$

• which are multiplications?

in all?

▲ 同 ▶ ▲ 国 ▶ ▲ 国

 $\boldsymbol{S}_{\boldsymbol{M}_{\varepsilon}}[i] \in \boldsymbol{V}.$

Solutions which are multiplications

- For all \boldsymbol{M}_{ξ} (an *n*-dimensional space) :
- Enforcing

$$oldsymbol{S}_{oldsymbol{M}_{arepsilon}}[i] \in \widetilde{oldsymbol{V}}$$

results in r linear constraints.

The dimension of Multiplications is n - r

Overall solution space

- For a general \boldsymbol{M} , $\boldsymbol{S}_{\boldsymbol{M}}[i]$ is some vector of length n(n-1)/2.
- Enforcing

$$\boldsymbol{S}_{\boldsymbol{M}}[i] \in \widetilde{\boldsymbol{V}}$$

results in n(n-1)/2 - (n-r) linear constraints.

The overall dimension of solutions is $n^2 - (n(n-1)/2 - (n-r))$

イロト イヨト イヨト

- 10

- The overall dimension is lower-bounded by the dimension of multiplications, which itself contain those in ker(L) (d = 1).
- The dimension of the solutions is :

$$\max\left\{n^2 - (n(n-1)/2 - (n-r)); n-r; 1\right\}$$

• More generally, for *k* coordinates, this dimension is :

$$\max\left\{n^2 - \frac{k(n(n-1)/2 - (n-r))}{n - kr}; 1\right\}$$

< 回 > < 回 > < 回 >

Recovering Non-Trivial Multiplications

$$\mathsf{dim}(\mathsf{Solutions}[k]) = \max\left\{n^2 - k(n(n-1)/2 - (n-r)) \ ; \ n-kr \ ; \ 1\right\}$$

When $r \leq (n-2)/3$

- At k = 3, the first term is negative.
- Only multiplications are expected, with dimension :

$$\max\left\{n-3r \ ; \ 1\right\}$$

• It contains non-trivial multiplications as soon as :

$$n-3r>1 \quad \Longleftrightarrow \quad r\leq \frac{n-2}{3}$$

< ロ > < 同 > < 回 > < 回 >

э

When $r \leq (n-2)/2$

• At k = 2, the solution space has dimension :

$$n^2 - 2(n(n-1)/2 - (n-r)) = 3n - 2r \ll n^2/2$$

• The dimension of multiplications in it is : $n - 2r < \epsilon . n$.

We use sum and intersection to refine a multiplication subspace :

- Consider $k = \frac{1}{\epsilon}$ solutions spaces E_1, \ldots, E_k for different pairs of coordinates.
- $(\sum_{k} E_{k}) \cap E_{k+1}$ contains only multiplications, and some are non-trivial when $r \leq (n-2)/2$.

イロト イポト イヨト イヨト

Experimental Results

- Multiplications Recovery : for the 3 proposed schemes :
 - SFLASHv2, FLASH : $r \simeq n/3$
 - SFLASHv3 : r ≃ n/6
- **2** Full C^* recovery : works as for the first attack.
- Signature Forgery : uses Patarin's attack over C^* .

n	37	37	67	67	131
θ	11	11	33	33	33
q	2	128	2	128	2
r	11	11	11	11	11
Mult. Recovery	4s	70s	1m	50m	35m
C [*] Recovery	7.5s	22s	2m	10m	7m
Forgery	0.01s	0.5s	0.02s	2s	0.1s

Note : parameters in bold are those of SFLASHv2 and SFLASHv3.

・ロト ・ 一 マ ・ コ ト ・ 日 ト