Differential Cryptanalysis for Multivariate Schemes

Jacques Stern

Joint work with P. A. Fouque and L. Granboulan

École normale supérieure

Differential Cryptanalysis for Multivariate Schemes – p.1/23

MI Cryptosystem

- \mathbb{F}_q a finite field of characteristic 2
- Secret Key : S, T two affine bijections in $(\mathbb{F}_q)^n$
- *F* is defined as $F(X) = X^{q^{\ell}+1}$ in \mathbb{F}_{q^n} and is thus a quadratic map from $(\mathbb{F}_q)^n$ to $(\mathbb{F}_q)^n$
- Public key : the system E of equations in $(\mathbb{F}_q)^n$

$$E = T \circ F \circ S$$

• Decryption function : invert T, compute F^{-1} by raising to the power $(q^{\ell} + 1)^{-1} \mod (q^n - 1)$, and invert S

Perturbated MI Cryptosystem (PMI)

- **R** linear map from $(\mathbb{F}_q)^n$ to $(\mathbb{F}_q)^r$ with $r \ll n$
- **H** quadratic function from $(\mathbb{F}_q)^r$ to $(\mathbb{F}_q)^n$
- $E' = T \circ (F + H \circ R) \circ S = E + T \circ H \circ R \circ S$
- The PMI scheme E' is the MI scheme E plus a random-looking quadratic term $T \circ H \circ R \circ S$
- q^r must be small so that exhaustive search on q^r is efficient, otherwise decryption is slow

• Secret key: (S, T, P) where P is a table storing (λ, μ) pairs s.t. $H(\mu) = \lambda$

MI and PMI Cryptosystems

E

Differential Cryptanalysis for Multivariate Schemes -p.4/23

PMI Decryption Algorithm

- Input : y ciphertext
- Output : $m{x}$ plaintext s.t. $m{y} = m{E'}(m{x})$
- Compute $B = T^{-1}(y)$
- For the q^r pairs $(\boldsymbol{\lambda}, \boldsymbol{\mu})$, compute

 $oldsymbol{A}_{oldsymbol{\lambda}}=F^{-1}(B-oldsymbol{\lambda})$ until $oldsymbol{R}(A_{oldsymbol{\lambda}})=oldsymbol{\mu}$

- Return $x_\lambda = S^{-1}(A_\lambda)$
- If many pairs (λ, μ) are possible, redundancy is added to the plaintext

PMI schemes and variants

Ding's practical cryptosystem

•
$$q = 2$$
, $n = 136$, $\ell = 40$ and $r = 6$

- So $F(X) = X^{2^{40}+1}$, $R : (\mathbb{F}_2)^{136} \to (\mathbb{F}_2)^6$ and $H : (\mathbb{F}_2)^6 \to (\mathbb{F}_2)^{136}$
- $\gcd(2^{136} 1, 2^{40} 1) = 2^{\gcd(136, 40)} 1 = 2^8 1$

The variant of PMI when $gcd(n, \ell) = 8$ is called "Ding's scheme"

The variant of PMI when $gcd(n, \ell) = 1$ is called "Generalized scheme"

Differential Cryptanalysis for Multivariate Schemes - p.6/23

Patarin attack on MI

- Search *n* bilinear relations $(B_i)_{1 \le i \le n}$ between the plaintext x and the ciphertext y
- Recover the coefficients of the bilinear relations using $O(n^2)$ plaintext/ciphertext pairs
- Given a ciphertext y, solve the system of the n bilinear relations to find the plaintext x
- However, the system is not invertible $(\Rightarrow$ exhaustive search to uniquely recover x)

Patarin attack on (2)

- Let $A = \boldsymbol{S}(\boldsymbol{x}) \in \mathbb{F}_{q^n}$ and $B = \boldsymbol{T^{-1}}(\boldsymbol{y}) \in \mathbb{F}_{q^n}$
- Since F(A) = B, we have $B = A^{q^{\ell}+1}$
- By raising to the power $q^{\ell} 1$ and multiplying by AB, we get a bilinear expression

$$A \cdot B^{q^{\ell}} = A^{q^{2\ell}} \cdot B$$

• Rewriting this equation in the variables x and y and projeting into $(\mathbb{F}_q)^n$, we get n bilinear relations between the plaintext and ciphertext

Breaking the PMI scheme

• $E' = E + T \circ H \circ R \circ S$

- Here, constants of affine maps are erased (see paper)
- If $k \in \mathcal{K} = \ker(R \circ S)$, then E'(k) = E(k)
- On the subspace K, Patarin's attack can be applied
- Goal : decrypting all PMI ciphertexts
 - when $x \in \mathcal{K}$ whose dimension (n r) is large
 - for all x

Detecting membership in \mathcal{K} using differential cryptanalysis

The use of differentials

Let G be a quadratic map, its differential is linear

 $|\boldsymbol{L}_{\boldsymbol{G},\boldsymbol{k}} : x \mapsto G(x+k) - G(x) - G(k) + G(0)|$

- The constant term disappears thanks to G(0), and so $L_{G,k}$ is a linear map and not an affine one
- Let X = S(x) and K = S(k)
- Differential of a composition of functions : if $E = T \circ F \circ S$, then $L_{E,k}(x) = T \circ L_{F,K}(X)$
- Since S and T are bijection, $\dim(\ker(\boldsymbol{L}_{\boldsymbol{E},\boldsymbol{k}})) = \dim(\ker(\boldsymbol{L}_{\boldsymbol{F},\boldsymbol{K}}))$

Expression of $L_{F,K}$

$$L_{F,K}(X) = F(X+K) - F(X) - F(K) + F(0)$$

= $(X+K)^{q^{\ell}} \cdot (X+K) - X^{q^{\ell}+1} - K^{q^{\ell}+1}$
= $(X^{q^{\ell}} + K^{q^{\ell}}) \cdot (X+K) - X^{q^{\ell}+1} - K^{q^{\ell}+1}$
= $K^{q^{\ell}} \cdot X + X^{q^{\ell}} \cdot K = K^{q^{\ell}+1} \cdot \left(\frac{X}{K} + \left(\frac{X}{K}\right)^{q^{\ell}}\right)$

 $X \mapsto L_{F,K}(X)$ is a linear map

Kernel's dimension of the differential in MI

• X is in the kernel of $L_{F,K}$

 $L_{F,K}(X) = 0 \quad \iff \quad Y + Y^{q^{\ell}} = 0 \text{ where } Y = \frac{X}{K}$ $\iff \quad Y(1 + Y^{q^{\ell} - 1}) = 0$ $\iff \quad Y^{q^{\ell} - 1} = 1 \text{ since } \operatorname{char}(\mathbb{F}_q) = 2$

• $Y = 1 \Rightarrow K \in \ker L_{F,K} \iff k \in \ker L_{E,k}$

• The equation $Y^{q^{\ell}-1} = 1$ has $q^{\operatorname{gcd}(\ell,n)} - 1$ solutions

• Therefore, $\dim(\ker L_{E,k}) = \dim(\ker L_{F,K}) = \gcd(\ell, n)$

Kernel's dimension of the differential in PMI

- What is the contribution of H

 R on the kernel's dimension ?
- Since *H* is quadratic, its differential is $L_{H\circ R,K}(X) = \sum_{i,j=1}^{r} \alpha_{i,j} [R_i(X)R_j(K) + R_i(K)R_j(X)]$
- K is always in $\ker(\boldsymbol{L}_{\boldsymbol{H}\circ\boldsymbol{R},\boldsymbol{K}})$ and $\dim(\ker(L_{E',K})) \geq 1$
- Since H is random, $L_{H \circ R,K}$ is a random linear map and $L_{E',k}$ is also a random linear map
- Consequently, $\dim(\ker L_{E',k})$ follows the distribution of random linear map

Breaking Ding's scheme

- In the proposed system, $gcd(\ell, n) = 8$
- The probability that a linear map has a kernel of dimension 8 is small ($\leq 1/2^{20})$
- We devise the following test :
 - if $\dim(\ker(L_{E',k})) = \gcd(\ell, n)$, then decide $k \in \mathcal{K}$
 - otherwise decide $k \notin \mathcal{K}$

Total Break of Ding's scheme

- \mathcal{K} can be recovered by collecting n r independent vectors as well as the bilinear relations of Patarin's attack when $k \in \mathcal{K}$
- On this subspace, we can invert any ciphertext y s.t. $x \in \mathcal{K}$ where y = E'(x) which holds with probability $1/q^r$
- The entire space can be divided into q^r affine subspaces parallel to the \mathcal{K} direction
- The same attack can be mounted in parallel on all these subspaces to recover any ciphertext y

Breaking the Generalized scheme

- When $gcd(\ell, n) = 1$, the previous test cannot be applied since $dim(\ker L_{E',k}) = gcd(\ell, n) = 1$ with high probability even if $k \notin \mathcal{K}$
- Therefore,
 - if $\dim(\ker L_{E',k}) = 1$, k may or not be in \mathcal{K}
 - if $\dim(\ker L_{E',k}) > 1$, $k \notin \mathcal{K}$ with probability 1
- We need to filter bad values k s.t.

 $\dim(\ker L_{E',k}) = 1 \text{ and } k \notin \mathcal{K}$

Filtering the bad values k

- Since \mathcal{K} is a linear space, if $k, k' \in \mathcal{K}$, then $k + k' \in \mathcal{K}$
- To decide if $k \in \mathcal{K}$, which holds with probability $1/q^r$, take different k' s.t. $\dim(\ker L_{E',k'}) = 1$ and compute the distribution of $\dim(L_{E',k+k'})$
- The distributions of $\dim(L_{E',k+k'})$ when $k \in \mathcal{K}$ and when $k \notin \mathcal{K}$ are different and can be distinguished by statistic experiments

New Attack on the MI cryptosystem

- This new attack finds two bilinear relations C and D of n coordinates :
 - C is between a vector fk of the kernel of the transpose matrix of LE,k and the ciphertext y corresponding to E(k)
 - D is between the vector f_k and the corresponding plaintext k

Decomposition of $L_{E,k}$

Since $L_{F,K}(X) = K^{q^{\ell}+1} \cdot \left(\frac{X}{K} + \left(\frac{X}{K}\right)^{q^{\ell}}\right)$, $L_{E,k} = T \circ L_{F,K} \circ S$ can be written as

 $T \circ \mu_K \circ \psi \circ \theta_K \circ S$

where μ_K , ψ and θ_K are the linear maps and K = S(k) and X = S(x):

$$\begin{aligned} \theta_K &: X \mapsto \frac{X}{K} \\ \psi &: Y \mapsto Y + Y^{q^{\ell}} \text{ independent of } K \\ \mu_K &: Z \mapsto K^{q^{\ell}+1} \cdot Z \end{aligned}$$

Differential Cryptanalysis for Multivariate Schemes – p.19/23

f_k in the kernel of transpose of $L_{E,k}$

• T, μ_K , ψ , θ_K and S are $n \times n$ matrices, and (f_k) is a row vector in $L_{E,k}^{\top}$ s.t.

 $(f_k)(T.\mu_K.\psi.\theta_K.S) = 0$

- Since θ_K and S invertible matrices, $(f_k)(T.\mu_K) \in \ker \psi$
- If $gcd(\ell, n) = 1$, then $dim(\ker \psi) = 1$ and if q = 2

$$(f_k)(T.\mu_K) = (\hat{f})$$

The two bilinear relations C and D

- $\mu_K(Z) = F(K) \cdot Z$ is linear in F(K)
- Since $F(K) = T^{-1}(E(k))$, then μ_K is linear in the ciphertext E(k)
- So $(f_k)(T.\mu_K) = (\hat{f})$ is a bilinear relation Cbetween E(k) and f_k which can be projected to the *n* coordinates
- Finally, as $(f_k)(L_{E,k}) = 0$ and $L_{E,k}$ is linear in k, then there is a bilinear relation D between f_k and the plaintext k

The new attack against MI

Precomputation stage :

- Using many plaintexts k, compute f_k (kernel of $L_{E,k}^{\top}$) and the corresponding ciphertexts E(k) and
 - recover the bilinear relations $C(f_k, E(k))$
 - recover the bilinear relations $D(f_k, k)$

On-line stage :

- Given a ciphertext E(k),
 - recover the vector f_k using C and
 - decrypt using D and f_k

Conclusion

- We show that differential cryptanalysis is a nice tool which can be adapted to successfully attack multivariate schemes
- We apply this novel cryptanalytic method in order to propose
 - A new attack against the MI original scheme
 - An attack against a recently proposed variant of MI called PMI