Differential Cryptanalysis for Multivariate Schemes

Jacques Stern

Joint work with P. A. Fouque and L. Granboulan

École normale supérieure

MI Cryptosystem

- \mathbb{F}_{q} a finite field of characteristic 2
- Secret Key : S, T two affine bijections in $\left(\mathbb{F}_{q}\right)^{n}$
- \boldsymbol{F} is defined as $F(X)=X^{q^{\ell}+1}$ in $\mathbb{F}_{q^{n}}$ and is thus a quadratic map from $\left(\mathbb{F}_{q}\right)^{n}$ to $\left(\mathbb{F}_{q}\right)^{n}$
- Public key : the system \boldsymbol{E} of equations in $\left(\mathbb{F}_{q}\right)^{n}$

$$
E=T \circ F \circ S
$$

- Decryption function : invert T, compute F^{-1} by raising to the power $\left(q^{\ell}+1\right)^{-1} \bmod \left(q^{n}-1\right)$, and invert S

Perturbated MI Cryptosystem (PMI)

- \boldsymbol{R} linear map from $\left(\mathbb{F}_{q}\right)^{n}$ to $\left(\mathbb{F}_{q}\right)^{r}$ with $r \ll n$
- \boldsymbol{H} quadratic function from $\left(\mathbb{F}_{q}\right)^{r}$ to $\left(\mathbb{F}_{q}\right)^{n}$
- $E^{\prime}=T \circ(F+H \circ R) \circ S=E+T \circ H \circ R \circ S$
- The PMI scheme E^{\prime} is the MI scheme E plus a random-looking quadratic term $T \circ H \circ R \circ S$
- q^{r} must be small so that exhaustive search on q^{r} is efficient, otherwise decryption is slow
- Secret key : $(\boldsymbol{S}, \boldsymbol{T}, P)$ where P is a table storing $(\boldsymbol{\lambda}, \mu)$ pairs s.t. $H(\mu)=\lambda$

MI and PMI Cryptosystems

PMI Decryption Algorithm

- Input : y ciphertext
- Output : x plaintext s.t. $y=E^{\prime}(x)$
- Compute $B=T^{-1}(y)$
- For the q^{r} pairs $(\boldsymbol{\lambda}, \boldsymbol{\mu})$, compute

$$
A_{\lambda}=F^{-1}(B-\lambda) \text { until } R\left(A_{\lambda}\right)=\mu
$$

- Return $x_{\lambda}=S^{-1}\left(A_{\lambda}\right)$
- If many pairs (λ, μ) are possible, redundancy is added to the plaintext

PMI schemes and variants

- Ding's practical cryptosystem
- $q=2, n=136, \ell=40$ and $r=6$
- so $F(X)=X^{2^{40}+1}, R:\left(\mathbb{F}_{2}\right)^{136} \rightarrow\left(\mathbb{F}_{2}\right)^{6}$ and $H:\left(\mathbb{F}_{2}\right)^{6} \rightarrow\left(\mathbb{F}_{2}\right)^{136}$
- $\operatorname{gcd}\left(2^{136}-1,2^{40}-1\right)=2^{\operatorname{gcd}(136,40)}-1=2^{8}-1$

The variant of PMI when $\operatorname{gcd}(n, \ell)=8$ is called "Ding's scheme"

The variant of PMI when $\operatorname{gcd}(n, \ell)=1$ is called "Generalized scheme"

Patarin attack on MI

- Search n bilinear relations $\left(B_{i}\right)_{1 \leq i \leq n}$ between the plaintext \boldsymbol{x} and the ciphertext \boldsymbol{y}
- Recover the coefficients of the bilinear relations using $O\left(n^{2}\right)$ plaintext/ciphertext pairs
- Given a ciphertext \boldsymbol{y}, solve the system of the n bilinear relations to find the plaintext x
- However, the system is not invertible (\Rightarrow exhaustive search to uniquely recover x)

Patarin attack on (2)

- Let $A=S(x) \in \mathbb{F}_{q^{n}}$ and $B=T^{-1}(y) \in \mathbb{F}_{q^{n}}$
- Since $F(A)=B$, we have $B=A^{q^{\ell}+1}$
- By raising to the power $q^{\ell}-1$ and multiplying by $A B$, we get a bilinear expression

$$
A \cdot B^{q^{\ell}}=A^{q^{2 \ell}} \cdot B
$$

- Rewriting this equation in the variables x and \boldsymbol{y} and projeting into $\left(\mathbb{F}_{q}\right)^{n}$, we get n bilinear relations between the plaintext and ciphertext

Breaking the PMI scheme

- $E^{\prime}=E+T \circ H \circ R \circ S$
- Here, constants of affine maps are erased (see paper)
- If $k \in \mathcal{K}=\operatorname{ker}(R \circ S)$, then $\boldsymbol{E}^{\prime}(\boldsymbol{k})=\boldsymbol{E}(\boldsymbol{k})$
- On the subspace \mathcal{K}, Patarin's attack can be applied
- Goal : decrypting all PMI ciphertexts
- when $x \in \mathcal{K}$ whose dimension $(n-r)$ is large
- for all x

Detecting membership in \mathcal{K} using differential cryptanalysis

The use of differentials

- Let G be a quadratic map, its differential is linear

$$
L_{G, k}: x \mapsto G(x+k)-G(x)-G(k)+G(0)
$$

- The constant term disappears thanks to $G(0)$, and so $L_{G, k}$ is a linear map and not an affine one
- Let $X=S(x)$ and $K=S(k)$
- Differential of a composition of functions : if $E=T \circ F \circ S$, then $L_{E, k}(x)=T \circ L_{F, K}(X)$
- Since S and T are bijection, $\operatorname{dim}\left(\operatorname{ker}\left(\boldsymbol{L}_{\boldsymbol{E}, \boldsymbol{k}}\right)\right)=\operatorname{dim}\left(\operatorname{ker}\left(\boldsymbol{L}_{\boldsymbol{F}, \boldsymbol{K}}\right)\right)$

Expression of $L_{F, K}$

$$
\begin{aligned}
L_{F, K}(X) & =F(X+K)-F(X)-F(K)+F(0) \\
& =(X+K)^{q^{\ell}} \cdot(X+K)-X^{q^{\ell}+1}-K^{q^{\ell}+1} \\
& =\left(X^{q^{\ell}}+K^{q^{\ell}}\right) \cdot(X+K)-X^{q^{\ell}+1}-K^{q^{q}+1} \\
& =K^{q^{\ell}} \cdot X+X^{q^{\ell}} \cdot K=K^{q^{\ell}+1} \cdot\left(\frac{X}{K}+\left(\frac{X}{K}\right)^{q^{\ell}}\right)
\end{aligned}
$$

$X \mapsto L_{F, K}(X)$ is a linear map

Kernel's dimension of the differential in MI

- X is in the kernel of $L_{F, K}$

$$
\begin{aligned}
L_{F, K}(X)=0 & \Longleftrightarrow Y+Y^{q^{\ell}}=0 \text { where } Y=\frac{X}{K} \\
& \Longleftrightarrow Y\left(1+Y^{q^{\ell}-1}\right)=0 \\
& \Longleftrightarrow Y^{q^{q}-1}=1 \text { since } \operatorname{char}\left(\mathbb{F}_{q}\right)=2
\end{aligned}
$$

- $Y=1 \Rightarrow K \in \operatorname{ker} L_{F, K} \Longleftrightarrow k \in \operatorname{ker} L_{E, k}$
- The equation $Y^{q^{\ell}-1}=1$ has $q^{\operatorname{gcd}(\ell, n)}-1$ solutions
- Therefore, $\operatorname{dim}\left(\operatorname{ker} L_{E, k}\right)=\operatorname{dim}\left(\operatorname{ker} L_{F, K}\right)=\operatorname{gcd}(\ell, n)$

Kernel's dimension of the differential in PMI

- What is the contribution of $H \circ R$ on the kernel's dimension?
- Since H is quadratic, its differential is $L_{H \circ R, K}(X)=\sum_{i, j=1}^{r} \alpha_{i, j}\left[R_{i}(X) R_{j}(K)+R_{i}(K) R_{j}(X)\right]$
- K is always in $\operatorname{ker}\left(\boldsymbol{L}_{H \circ R, K}\right)$ and $\operatorname{dim}\left(\operatorname{ker}\left(L_{E^{\prime}, K}\right)\right) \geq 1$
- Since H is random, $L_{H \circ R, K}$ is a random linear map and $L_{E^{\prime}, k}$ is also a random linear map
- Consequently, $\operatorname{dim}\left(\right.$ ker $\left.L_{B^{\prime}, k}\right)$ follows the distribution of random linear map

Breaking Ding's scheme

In the proposed $\operatorname{system}, \operatorname{gcd}(\ell, n)=8$

- The probability that a linear map has a kernel of dimension 8 is small $\left(\leq 1 / 2^{20}\right)$
- We devise the following test :
- if $\operatorname{dim}\left(\operatorname{ker}\left(L_{E^{\prime}, k}\right)\right)=\operatorname{gcd}(\ell, n)$, then decide $k \in \mathcal{K}$
- otherwise decide $k \notin \mathcal{K}$

Total Break of Ding's scheme

- \mathcal{K} can be recovered by collecting $n-r$ independent vectors as well as the bilinear relations of Patarin's attack when $k \in \mathcal{K}$
- On this subspace, we can invert any ciphertext y s.t. $x \in \mathcal{K}$ where $y=\boldsymbol{E}^{\prime}(x)$ which holds with probability $1 / q^{r}$
- The entire space can be divided into q^{r} affine subspaces parallel to the \mathcal{K} direction
- The same attack can be mounted in parallel on all these subspaces to recover any ciphertext y

Breaking the Generalized scheme

- When $\operatorname{gcd}(\ell, n)=1$, the previous test cannot be applied since $\operatorname{dim}\left(\operatorname{ker} L_{E^{\prime}, k}\right)=\operatorname{gcd}(\ell, n)=1$ with high probability even if $k \notin \mathcal{K}$
- Therefore,
- if $\operatorname{dim}\left(\operatorname{ker} L_{E^{\prime}, k}\right)=1, k$ may or not be in \mathcal{K}
- if $\operatorname{dim}\left(\operatorname{ker} L_{E^{\prime}, k}\right)>1, k \notin \mathcal{K}$ with probability 1
- We need to filter bad values k s.t.

$$
\operatorname{dim}\left(\operatorname{ker} L_{E^{\prime}, k}\right)=1 \text { and } k \notin \mathcal{K}
$$

Filtering the bad values k

- Since \mathcal{K} is a linear space, if $k, k^{\prime} \in \mathcal{K}$, then $k+k^{\prime} \in \mathcal{K}$
- To decide if $k \in \mathcal{K}$, which holds with probability $1 / q^{r}$, take different k^{\prime} s.t. $\operatorname{dim}\left(\operatorname{ker} L_{E^{\prime}, k^{\prime}}\right)=1$ and compute the distribution of $\operatorname{dim}\left(L_{E^{\prime}, k+k^{\prime}}\right)$
- The distributions of $\operatorname{dim}\left(L_{E^{\prime}, k+k^{\prime}}\right)$ when $k \in \mathcal{K}$ and when $k \notin \mathcal{K}$ are different and can be distinguished by statistic experiments

New Attack on the MI cryptosystem

This new attack finds two bilinear relations C and D of n coordinates :

- C is between a vector f_{k} of the kernel of the transpose matrix of $L_{E, k}$ and the ciphertext \boldsymbol{y} corresponding to $E(\boldsymbol{k})$
- D is between the vector f_{k} and the corresponding plaintext k

Decomposition of $L_{E, k}$

- Since $L_{F, K}(X)=K^{q^{\ell}+1} \cdot\left(\frac{X}{K}+\left(\frac{X}{K}\right)^{q^{q}}\right)$, $L_{E, k}=T \circ L_{F, K} \circ S$ can be written as

$$
T \circ \mu_{K} \circ \psi \circ \theta_{K} \circ S
$$

where μ_{K}, ψ and θ_{K} are the linear maps and $K=S(k)$ and $X=S(x)$:

$$
\begin{aligned}
\theta_{K} & : X \mapsto \frac{X}{K} \\
\psi & : Y \mapsto Y+Y^{q^{\ell}} \text { independent of } K \\
\mu_{K} & : Z \mapsto K^{q^{q}+1} \cdot Z
\end{aligned}
$$

f_{k} in the kernel of transpose of $L_{E, k}$

- $T, \mu_{K}, \psi, \theta_{K}$ and S are $n \times n$ matrices, and $\left(f_{k}\right)$ is a row vector in $L_{E, k}^{\top}$ s.t.

$$
\left(f_{k}\right)\left(T \cdot \mu_{K} \cdot \psi \cdot \theta_{K} \cdot S\right)=0
$$

- Since θ_{K} and S invertible matrices,

$$
\left(f_{k}\right)\left(T \cdot \mu_{K}\right) \in \operatorname{ker} \psi
$$

- If $\operatorname{gcd}(\ell, n)=1$, then $\operatorname{dim}(\operatorname{ker} \psi)=1$ and if $q=2$

$$
\left(f_{k}\right)\left(T \cdot \mu_{K}\right)=(\hat{f})
$$

The two bilinear relations C and D

- $\mu_{K}(Z)=F(K) \cdot Z$ is linear in $F(K)$
- Since $F(K)=T^{-1}(E(k))$, then μ_{K} is linear in the ciphertext $E(k)$
- So $\left(f_{k}\right)\left(T \cdot \mu_{K}\right)=(\hat{f})$ is a bilinear relation C between $E(k)$ and f_{k} which can be projected to the n coordinates
- Finally, as $\left(f_{k}\right)\left(L_{E, k}\right)=0$ and $L_{E, k}$ is linear in k, then there is a bilinear relation D between f_{k} and the plaintext k

The new attack against MI

Precomputation stage :

- Using many plaintexts k, compute f_{k} (kernel of $L_{E, k}^{\top}$) and the corresponding ciphertexts $E(k)$ and
- recover the bilinear relations $C\left(f_{k}, E(k)\right)$
- recover the bilinear relations $D\left(f_{k}, k\right)$

On-line stage :

- Given a ciphertext $E(k)$,
- recover the vector f_{k} using C and
- decrypt using D and f_{k}

Conclusion

- We show that differential cryptanalysis is a nice tool which can be adapted to successfully attack multivariate schemes
- We apply this novel cryptanalytic method in order to propose
- A new attack against the MI original scheme
- An attack against a recently proposed variant of MI called PMI

