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MI Cryptosystem

• Fq a finite field of characteristic 2

• Secret Key : S, T two affine bijections in (Fq)
n

• F is defined as F (X) = Xq`+1 in Fqn and is thus a
quadratic map from (Fq)

n to (Fq)
n

• Public key : the system E of equations in (Fq)
n

E = T ◦ F ◦ S

• Decryption function : invert T , compute F−1 by raising
to the power (q` + 1)−1 mod (qn − 1), and invert S
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Perturbated MI Cryptosystem (PMI)

• R linear map from (Fq)
n to (Fq)

r with r ¿ n

• H quadratic function from (Fq)
r to (Fq)

n

• E′ = T ◦ (F + H ◦ R) ◦ S = E + T ◦ H ◦ R ◦ S

• The PMI scheme E′ is the MI scheme E plus a
random-looking quadratic term T ◦ H ◦ R ◦ S

• qr must be small so that exhaustive search on qr is
efficient, otherwise decryption is slow

• Secret key : (S,T , P ) where P is a table storing (λ,µ)

pairs s.t. H(µ) = λ
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MI and PMI Cryptosystems
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PMI Decryption Algorithm

• Input : y ciphertext

• Output : x plaintext s.t. y = E′(x)

• Compute B = T−1(y)

• For the qr pairs (λ,µ), compute

Aλ = F−1(B − λ) until R(Aλ) = µ

• Return xλ = S−1(Aλ)

• If many pairs (λ, µ) are possible, redundancy is
added to the plaintext
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PMI schemes and variants

• Ding’s practical cryptosystem

• q = 2, n = 136, ` = 40 and r = 6

• so F (X) = X240+1, R : (F2)
136 → (F2)

6 and
H : (F2)

6 → (F2)
136

• gcd(2136 − 1, 240 − 1) = 2gcd(136,40) − 1 = 28 − 1

The variant of PMI when gcd(n, `) = 8 is called “Ding’s
scheme”

The variant of PMI when gcd(n, `) = 1 is called
“Generalized scheme”
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Patarin attack on MI

• Search n bilinear relations (Bi)1≤i≤n between
the plaintext x and the ciphertext y

• Recover the coefficients of the bilinear
relations using O(n2) plaintext/ciphertext
pairs

• Given a ciphertext y, solve the system of the
n bilinear relations to find the plaintext x

• However, the system is not invertible
(⇒ exhaustive search to uniquely recover x)
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Patarin attack on (2)

• Let A = S(x) ∈ Fqn and B = T −1(y) ∈ Fqn

• Since F (A) = B, we have B = Aq`+1

• By raising to the power q` − 1 and multiplying
by AB, we get a bilinear expression

A ·Bq`

= Aq2`

·B

• Rewriting this equation in the variables x and
y and projeting into (Fq)

n, we get n bilinear
relations between the plaintext and ciphertext
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Breaking the PMI scheme

• E′ = E + T ◦ H ◦ R ◦ S

• Here, constants of affine maps are erased (see paper)

• If k ∈ K = ker(R ◦ S), then E′(k) = E(k)

• On the subspace K, Patarin’s attack can be applied

• Goal : decrypting all PMI ciphertexts

• when x ∈ K whose dimension (n− r) is large

• for all x

Detecting membership in K using differential cryptanalysis
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The use of differentials

• Let G be a quadratic map, its differential is linear

LG,k : x 7→ G(x+ k)−G(x)−G(k) +G(0)

• The constant term disappears thanks to G(0), and so
LG,k is a linear map and not an affine one

• Let X = S(x) and K = S(k)

• Differential of a composition of functions : if
E = T ◦ F ◦ S, then LE,k(x) = T ◦ LF,K(X)

• Since S and T are bijection,
dim(ker(LE,k)) = dim(ker(LF,K))
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Expression of LF,K

LF,K(X) = F (X +K)− F (X)− F (K) + F (0)

= (X +K)q`

· (X +K)−Xq`+1 −Kq`+1

= (Xq`

+Kq`

) · (X +K)−Xq`+1 −Kq`+1

= Kq`

·X +Xq`

·K = Kq`+1 ·

(

X

K
+

(

X

K

)q`
)

X 7→ LF,K(X) is a linear map
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Kernel’s dimension of the differential in MI

• X is in the kernel of LF,K

LF,K(X) = 0 ⇐⇒ Y + Y q`

= 0 where Y =
X

K

⇐⇒ Y (1 + Y q`
−1) = 0

⇐⇒ Y q`
−1 = 1 since char(Fq) = 2

• Y = 1 ⇒ K ∈ kerLF,K ⇐⇒ k ∈ kerLE,k

• The equation Y q`
−1 = 1 has qgcd(`,n) − 1 solutions

• Therefore, dim(kerLE,k) = dim(kerLF,K) = gcd(`, n)

Differential Cryptanalysis for Multivariate Schemes – p.12/23



Kernel’s dimension of the differential in PMI

• What is the contribution of H ◦ R on the kernel’s
dimension ?

• Since H is quadratic, its differential is
LH◦R,K(X) =

∑r

i,j=1 αi,j[Ri(X)Rj(K) +Ri(K)Rj(X)]

• K is always in ker(LH◦R,K) and dim(ker(LE′,K)) ≥ 1

• Since H is random, LH◦R,K is a random linear map
and LE′,k is also a random linear map

• Consequently, dim(kerLE′,k) follows the distribution of
random linear map
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Breaking Ding’s scheme

• In the proposed system, gcd(`, n) = 8

• The probability that a linear map has a kernel
of dimension 8 is small (≤ 1/220)

• We devise the following test :
• if dim(ker(LE′,k)) = gcd(`, n), then decide
k ∈ K

• otherwise decide k 6∈ K
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Total Break of Ding’s scheme

• K can be recovered by collecting n− r independent
vectors as well as the bilinear relations of Patarin’s
attack when k ∈ K

• On this subspace, we can invert any ciphertext y s.t.
x ∈ K where y = E′(x) which holds with probability
1/qr

• The entire space can be divided into qr affine
subspaces parallel to the K direction

• The same attack can be mounted in parallel on all
these subspaces to recover any ciphertext y
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Breaking the Generalized scheme

• When gcd(`, n) = 1, the previous test cannot be
applied since dim(kerLE′,k) = gcd(`, n) = 1 with high
probability even if k 6∈ K

• Therefore,

• if dim(kerLE′,k) = 1, k may or not be in K

• if dim(kerLE′,k) > 1, k 6∈ K with probability 1

• We need to filter bad values k s.t.

dim(kerLE′,k) = 1 and k 6∈ K
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Filtering the bad values k

• Since K is a linear space, if k, k′ ∈ K, then k + k′ ∈ K

• To decide if k ∈ K, which holds with probability 1/qr,
take different k′ s.t. dim(kerLE′,k′) = 1 and compute
the distribution of dim(LE′,k+k′)

• The distributions of dim(LE′,k+k′) when k ∈ K and
when k 6∈ K are different and can be distinguished by
statistic experiments
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New Attack on the MI cryptosystem

• This new attack finds two bilinear relations C
and D of n coordinates :
• C is between a vector fk of the kernel of

the transpose matrix of LE,k and the
ciphertext y corresponding to E(k)

• D is between the vector fk and the
corresponding plaintext k
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Decomposition of LE,k

• Since LF,K(X) = Kq`+1 ·
(

X
K

+
(

X
K

)q`
)

,

LE,k = T ◦ LF,K ◦ S can be written as

T ◦ µK ◦ ψ ◦ θK ◦ S

where µK , ψ and θK are the linear maps and
K = S(k) and X = S(x) :

θK : X 7→
X

K

ψ : Y 7→ Y + Y q`

independent of K

µK : Z 7→ Kq`+1 · Z
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fk in the kernel of transpose of LE,k

• T , µK , ψ, θK and S are n× n matrices, and
(fk) is a row vector in L>E,k s.t.

(fk)(T.µK .ψ.θK .S) = 0

• Since θK and S invertible matrices,

(fk)(T.µK) ∈ kerψ

• If gcd(`, n) = 1, then dim(kerψ) = 1 and if
q = 2

(fk)(T.µK) = (f̂)
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The two bilinear relations C and D

• µK(Z) = F (K) · Z is linear in F (K)

• Since F (K) = T−1(E(k)), then µK is linear in
the ciphertext E(k)

• So (fk)(T.µK) = (f̂) is a bilinear relation C
between E(k) and fk which can be projected
to the n coordinates

• Finally, as (fk)(LE,k) = 0 and LE,k is linear in
k, then there is a bilinear relation D between
fk and the plaintext k
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The new attack against MI

Precomputation stage :

• Using many plaintexts k, compute fk (kernel of L>E,k)
and the corresponding ciphertexts E(k) and

• recover the bilinear relations C(fk, E(k))

• recover the bilinear relations D(fk, k)

On-line stage :

• Given a ciphertext E(k),

• recover the vector fk using C and

• decrypt using D and fk
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Conclusion

• We show that differential cryptanalysis is a
nice tool which can be adapted to
successfully attack multivariate schemes

• We apply this novel cryptanalytic method in
order to propose
• A new attack against the MI original

scheme
• An attack against a recently proposed

variant of MI called PMI
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