Pairing-Based Cryptography – An Introduction

Kenny Paterson
Information Security Group
Royal Holloway, University of London
kenny.paterson@rhul.ac.uk

May 4th 2007
The Pairings Explosion

- Pairings originally used destructively in MOV/Frey-Rück attack.

- 2007: Boneh-Franklin now has over 900 citations on Google Scholar.

- We provide a “taster” of this work, with the benefit of hindsight guiding our selection of topics.
 - We focus on Identity-Based Encryption (IBE) in this talk.
 - Next talk will look at other applications.
Overview

- Pairings in the abstract
- Sakai-Ohgishi-Kasahara non-interactive key distribution
- Joux’s three-party key exchange protocol
- Boneh-Franklin Identity-Based Encryption (IBE)
- Gentry-Silverberg hierarchical IBE
- IBE in the standard model
- Applications of standard-model-secure IBE
1 Pairings in the Abstract

Basic properties:

- Triple of groups G_1, G_2, G_T, all of prime order r.
- A mapping $e : G_1 \times G_2 \rightarrow G_T$ such that:
 - $e(P + Q, R) = e(P, R) \cdot e(Q, R)$
 - $e(P, R + S) = e(P, R) \cdot e(P, S)$
 - Hence
 \[e(aP, bR) = e(P, R)^{ab} = e(bP, aR) = \ldots \]
- Non-degeneracy: $e(P, R) \neq 1$ for some $P \in G_1, R \in G_2$.
- Computability: $e(P, R)$ can be efficiently computed.
Pairings in the Abstract

• Typically, G_1, G_2 are subgroups of the group of r-torsion points on an elliptic curve E defined over a field \mathbb{F}_q.

• Hence additive notation for G_1, G_2.

• Then G_T is a subgroup of \mathbb{F}^*_q where k is the least integer with $r|q^k - 1$.

• Hence multiplicative notation for G_T.

• k is called the embedding degree.
Pairings in the Abstract

- A curve E for which a suitable collection $\langle e, r, G_1, G_2, G_T \rangle$ exists is said to be \textit{pairing-friendly}.
- If E is supersingular, then we can arrange $G_1 = G_2 = G$.
- Simplifies presentation of schemes and security analyses.
- Allows “small” representations of group elements in both G_1 and G_2.
- But then we are limited to $k \leq 6$ with consequences for efficiency at higher security levels.
- Even generation of parameters may become difficult.
Pairings in the Abstract

• If E is ordinary, then a variety of constructions for pairing-friendly curves are known.

• Typically $\mathbb{G}_1 \subset E(\mathbb{F}_q)[r]$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})[r]$.

• But then certain trade-offs are involved:
 – Only elements of \mathbb{G}_1 may have short representations.
 – It may be difficult to hash onto \mathbb{G}_2.
 – $\log_2 q / \log_2 r$ may be large, so we don’t get full security of the curve E defined over \mathbb{F}_q.

• See e-print paper by Galbraith, Paterson, Smart for more info.
2 Sakai-Ohgishi-Kasahara

At SCIS2000, Sakai, Ohgishi and Kasahara used pairings to construct:

- An identity-based signature scheme (IBS); and
- An identity-based non-interactive key distribution scheme (NIKDS).

The latter has proven to be very influential . . .

(At SCIS2001, Sakai, Ohgishi and Kasahara also used pairings to construct the first efficient and secure IBE scheme.)
SOK ID-based NIKDS

- Assume we have a pairing $e : \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T$ and a hash function $H : \{0, 1\}^* \rightarrow \mathbb{G}$.

- The Trusted Authority (TA) selects as its master secret a value $s \in \mathbb{Z}_r$.

- Entity A’s public key is defined to be $H(\text{ID}_A)$; similarly for B.

- Entity A with identity ID_A receives private key $sH(\text{ID}_A)$ from the TA; likewise for B.

- A and B can non-interactively compute a shared key via:

$$e(sH(\text{ID}_A), H(\text{ID}_B)) = e(H(\text{ID}_A), H(\text{ID}_B))^s = e(H(\text{ID}_A), sH(\text{ID}_B)).$$

- A version exists in the more general setting $e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$.
Security of SOK ID-based NIKDS

Security (in an appropriate model, and modelling H as a random oracle) depends on the hardness of the **Bilinear Diffie-Hellman Problem (BDHP):**

Given $\langle P, aP, bP, cP \rangle$ for $a, b, c \leftarrow_R \mathbb{Z}_r$, compute $e(P, P)^{abc}$.

The BDH assumption is that there is no efficient algorithm to solve the BDH problem with non-negligible probability (as a function of some security parameter k that controls the instance size).
Applications of SOK ID-based NIKDS

- Identity-based key exchange:
 - use SOK as a key to a MAC to authenticate a Diffie-Hellman exchange (Boyd-Mao-Paterson,...)
 - use a SOK-variant in an interactive key-exchange (Smart, Chen-Kudla, many others)

- Secret handshake protocols (Balfanz et al.,...).

- Strong designated verifier signatures (Huang et al.,...).

- etc.
More on the Bilinear Diffie-Hellman Problem

Given $\langle P, aP, bP, cP \rangle$ for $a, b, c \leftarrow_R \mathbb{Z}_r$, compute $e(P, P)^{abc}$.

- BDHP is not harder than CDH problem in \mathbb{G}, \mathbb{G}_T.

- The pairing makes DDH easy in \mathbb{G}:
 — P, aP, bP, cP is a DH quadruple iff
 \[
 e(aP, bP) = e(P, cP).
 \]

- A variant of BDHP exists for the setting $e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$.

- A zoo of other computational and decisional problems have been defined for the purposes of proving secure certain pairing-based schemes.
3 Joux’s Three-Party Key Exchange Protocol (2000)

- Fix generator $P \in G$, with $e : G \times G \rightarrow G_T$.
- Parties A, B and C respectively choose random $a, b, c \in \mathbb{Z}_r$.
- A broadcasts aP.
- B broadcasts bP.
- C broadcasts cP.
- All three parties can now compute shared secret:

$$e(P, P)^{abc} = e(aP, bP)^c = e(aP, cP)^b = e(cP, bP)^a$$
Joux’s Protocol

- Since all messages can be sent simultaneously this protocol can be completed in one round.
- This is in contrast to all previous key exchange protocols for 3 parties.
- Security against passive adversary based on hardness of BDHP.
- Not secure against active adversaries.
- To make an authenticated 3-party protocol, add signatures or adapt MQV/MTI protocols.
- Basis for several proposals for efficient multi-party protocols.
4 Boneh-Franklin IBE

- Boneh and Franklin (Crypto 2001) gave first efficient ID-based encryption scheme with security model and proof.
 - Shamir (Crypto’84) proposed IBE concept but no IBE scheme.
 - SOK scheme (SCIS 2001) is roughly the same scheme, but without security model or proof.
 - Cocks’ scheme (IMA C&C 2001) has long ciphertexts.
 - Maurer-Yacobi scheme (Eurocrypt’91) is inefficient.

- Basic version provides CPA security, enhanced version gives CCA security.

- Boneh-Franklin paper was the main trigger for the flood of research in pairing-based cryptography.
Boneh-Franklin IBE

Setup:

1. On input a security parameter k, generate parameters $\langle G, G_T, e, r \rangle$ where $e : G \times G \rightarrow G_T$ is a pairing on groups of prime order r.

2. Select two hash functions $H_1 : \{0, 1\}^* \rightarrow G$, $H_2 : G_T \rightarrow \{0, 1\}^n$, where n is the length of plaintexts.

3. Choose an arbitrary generator $P \in G$.

4. Select a master-key s uniformly at random from \mathbb{Z}_r^* and set $P_0 = sP$.

5. Return the public system parameters

 $\text{params} = \langle G, G_T, e, r, P, P_0, H_1, H_2 \rangle$ and the master-key s.
Boneh-Franklin IBE

Extract: Given an identity $\text{ID} \in \{0, 1\}^*$, set $d_{\text{ID}} = sH_1(\text{ID})$ as the private key – identical to private key extraction of SOK.

Encrypt: Inputs are message M and an identity ID.

1. Choose random $t \in \mathbb{Z}_r$.

2. Compute the ciphertext $C = \langle tP, M \oplus H_2(e(H_1(\text{ID}), P_0)^t) \rangle$.

Decrypt: Given a ciphertext $\langle U, V \rangle$ and a private key d_{ID}, compute:

$$M = V \oplus H_2(e(d_{\text{ID}}, U)).$$
Boneh-Franklin IBE – What Makes it Tick?

- Both sender (who has t) and receiver (who has d_{ID}) can compute $e(H_1(\text{ID}), P)^{st}$:

 $e(H_1(\text{ID}), P)^{st} = e(H_1(\text{ID}), sP)^t = e(H_1(\text{ID}), P_0)^t$

 $e(H_1(\text{ID}), P)^{st} = e(sH_1(\text{ID}), tP) = e(d_{\text{ID}}, U)$

- Alternatively: the scheme encrypts with a mask obtained by hashing the SOK key shared between identities with public keys $H_1(\text{ID})$ and tP.
 - Here, the sender uses the “reference key-pair” P, P_0 to create a fresh key-pair tP, tP_0 for each message.
 - SOK key is then $e(H_1(\text{ID}), tP)^s$.
 - So Boneh-Franklin IBE can be obtained by making a simple modification to the SOK ID-based NIKDS.
Security of Boneh-Franklin IBE

Informally:

- Adversary sees message XORed with hash of $e(H_1(ID), P_0)^t$.
- Adversary also sees $P_0 = sP$ and $U = tP$.
- Write $H_1(ID) = zP$ for some (unknown) z.
- Then $e(H_1(ID), P_0)^t = e(P, P)^{stz}$.
- Because H_2 is modeled as a random oracle, adversary needs to compute $e(P, P)^{stz}$ when given as inputs sP, tP, zP.
- This is an instance of the BDH problem.
Security Model for IBE

Similar game to standard security game for PKE:

- Challenger C runs Setup and adversary A is given the public parameters.
- A accesses Extract and Decrypt oracles.
- A outputs two messages m_0, m_1 and a challenge identity ID^*.
- C selects random bit b and gives A an encryption of m_b under identity ID^*, denoted c^*.
- A makes further oracle access and finally outputs a guess b' for b.

A wins the game if $b' = b$. Define

$$\text{Adv}(A) = 2|\text{Pr}[b' = b] - 1/2|.$$
Security Model for IBE

Natural limitations on oracle access and selection of ID*:

- No Extract query on ID*.
- No Decrypt query on c^*, ID*.

An IBE scheme is said to be IND-ID-CCA secure if there is no poly-time adversary \mathcal{A} which wins the above game with non-negligible advantage.

An IBE scheme is said to be IND-ID-CPA secure if there is no poly-time adversary \mathcal{A} having access only to the Extract oracle which wins the above game with non-negligible advantage.
Security of Boneh-Franklin IBE

- Boneh and Franklin prove that their encryption scheme is IND-ID-CPA secure, provided the BDH assumption holds.
- The proof is in the random oracle model.
- “Standard” techniques can be used to transform Boneh-Franklin IBE into an IND-ID-CCA secure scheme.
- These generally add complexity, require random oracles, and result in inefficient security reductions.
5 Hierarchical IBE

- Extension of IBE to provide hierarchy of TAs, each generating private keys for TAs in level below.
- Encryption needs only root TA’s parameters and list of identities.
- First secure, multi-level scheme due to Gentry and Silverberg.
- Also an important theoretical tool:
 - Forward secure encryption.
 - Generation of IND-ID-CCA secure (H)IBE from IND-ID-CPA secure HIBE.
 - Intrusion-resilient cryptography.
6 IBE in the Standard Model

- Prior to ca. 2004, most applications of pairings to construct cryptographic schemes involved use of the Random Oracle Model (ROM).

- ROM provides a powerful and convenient tool for modeling hash functions in security proofs.

- Question marks over extent to which ROM accurately models the behavior of hash functions.

- Several examples in the literature of schemes secure in the ROM but insecure for every family of hash functions.

- General move towards “proofs in the standard model” in cryptography.
CHK, BB, and Waters

IBE in the standard model:

• Eurocrypt 2003: Canetti-Halevi-Katz provide Selective-ID secure IBE scheme.
 — fairly inefficient and with limitations on adversarial capabilities.

• Eurocrypt 2004: Boneh-Boyen present efficient Selective-ID secure (H)IBE scheme.

• Crypto 2004: Boneh-Boyen present inefficient, but IND-ID-CPA secure IBE scheme.

A Notational Switch

Boneh-Boyen initiated a switch of notation which has remained popular in recent papers.

Henceforth in this talk all groups are written multiplicatively and g denotes a generator of \mathbb{G}.

And we have $e(g^a, g^b) = e(g, g)^{ab} = e(g^b, g^a)$ etc.
Waters’ IBE

Setup:

1. On input a security parameter k, generate parameters
 \[\langle G, G_T, e, r \rangle \] where $e : G \times G \rightarrow G_T$ is a pairing on groups of prime order r.

2. Select $u', u_0, \ldots, u_{n-1} \leftarrow_R \mathbb{G}^{n+1}$. Here n is the length of (hashed) identities.

3. Choose an arbitrary generator $g \in G$ and $s \leftarrow_R \mathbb{Z}_r$. Set $g_1 = g^s, g_2 \leftarrow_R \mathbb{G}$.

4. The master-key is g_2^s.

5. Output $\text{params} = \langle G, G_T, e, r, g, g_1, g_2, u', u_0, \ldots, u_{n-1} \rangle$.
Waters’ IBE

The Waters Hash: Given an n-bit string $b = b_0 b_1 \ldots b_{n-1}$, define

$$H_W(b) = u' u_0^{b_0} \cdots u_{n-1}^{b_{n-1}} = u' \prod_{b_i = 1} u_i.$$

Extract: Given an identity $\text{ID} \in \{0, 1\}^*$, select $t \leftarrow_R \mathbb{Z}_r$ and set

$$d_{\text{ID}} = \langle g_2^s H_W(\text{ID})^t, g^t \rangle \in \mathbb{G}^2$$

- randomised private key extraction.
Waters’ IBE

Encrypt: Inputs are a message $m \in \mathbb{G}_T$ and an identity ID.

1. Choose random $z \in \mathbb{Z}_r$.

2. Compute the ciphertext

$$c = \langle m \cdot e(g_1, g_2)^z, g^z, H_W(\text{ID})^z \rangle \in \mathbb{G}_T \times \mathbb{G}^2.$$

Decrypt: Given a ciphertext $c = \langle c_1, c_2, c_3 \rangle$ and a private key $d_{\text{ID}} = \langle d_1, d_2 \rangle$, compute:

$$m = c_1 \cdot \frac{e(d_2, c_3)}{e(d_1, c_2)}.$$
Correctness of Waters’ IBE

The Waters scheme is correct:

\[e(d_2, c_3) = e(g^t, H_W(ID)^z) = e(g, H_W(ID))^{tz} \]

and

\[
\begin{align*}
 e(d_1, c_2) &= e(g^s_2 H_W(ID)^t, g^z) \\
 &= e(g^s_2, g^z) \cdot e(H_W(ID)^t, g^z) \\
 &= e(g_2, g)^{sz} \cdot e(g, H_W(ID))^{tz}.
\end{align*}
\]

Hence

\[
\frac{e(d_2, c_3)}{e(d_1, c_2)} = e(g_2, g)^{-sz} = e(g_1, g_2)^{-z}
\]

so

\[
c_1 \cdot \frac{e(d_2, c_3)}{e(d_1, c_2)} = m \cdot e(g_1, g_2)^{z} \cdot e(g_1, g_2)^{-z} = m.
\]
Efficiency of Waters’ IBE

- Large public parameters: dominated by \(n + 1 \) random group elements.
 - Could generate these pseudo-randomly.

- Small private keys (2 group elements) and ciphertexts (3 group elements).

- Encryption: on average \(n/2 + 1 \) group operations in \(\mathbb{G} \), two exponentiations in \(\mathbb{G} \), one exponentiation in \(\mathbb{G}_1 \) (assuming \(e(g_1, g_2) \) is pre-computed.

- Decryption: dominated by cost of two pairing computations.

- Size of public parameters can be reduced at the cost of a looser security reduction using ideas of Chatterjee-Sarker and Naccache.
Security for Waters’ IBE

Waters showed that his scheme is IND-ID-CPA secure assuming the hardness of the decisional BDHP:

Given \(\langle g, g^a, g^b, g^c, Z \rangle \) for \(a, b, c \leftarrow_R \mathbb{Z}_r \), and \(Z \in \mathbb{G}_T \), decide if \(Z = e(g, g)^{abc} \).

c.f. Proof of security for Boneh-Franklin IBE based on hardness of BDHP in the Random Oracle Model.
7 Applications of Standard Model IBE

- Canetti-Halevi-Katz (Eurocrypt 2004) showed how to build an IND-CCA secure PKE scheme from any IND-ID-CPA secure IBE scheme.
- Selective-ID security sufficient for this application.
- Techniques later improved by Boneh-Katz (RSA-CT 2005).
- Can be applied to selective-ID secure IBE scheme of Boneh-Boyen scheme (don’t need full security of Waters’ IBE).
- Provides a new method for constructing IND-CCA secure PKE in the standard model.
The CHK construction: PKE from IBE

Setup: Public key of PKE set to params of IBE; private key is set to master-key.

Encrypt:

- Generate a key-pair $\langle vk, sk \rangle$ for a strong one-time signature scheme;
- IBE-encrypt m using as the identity the verification key vk to obtain c;
- Sign c using signature key sk to obtain σ;
- Output $\langle vk, c, \sigma \rangle$ as the encryption of m.
The CHK construction: PKE from IBE

Decrypt:

- Check that σ is a valid signature on c given vk;
- Use the master-key to generate the IBE private key for identity vk;
- Use this key to IBE-decrypt c to obtain m.

Informally: a decryption oracle is of no use to an attacker faced with $\langle vk^*, c^*, \sigma^* \rangle$:

- If oracle queried on $\langle vk, c, \sigma \rangle$ with $vk = vk^*$, then σ will be incorrect (unforgeability).
- If query with $vk \neq vk^*$, then IBE decryption will be done with a different “identity” so result won’t help (IBE security).
The BMW construction: PKE from Waters’ IBE

Boneh-Mei-Waters (ACM-CCS 2005) used a direct approach to produce an efficient PKE scheme from Waters’ IBE (and from Boneh-Boyen).

Key generation:

- Public key:

 \[
 \langle G, G_T, e, r, g, g_1, g_2, s', u' = g^{y'}, u_0 = g^{y_0}, \ldots, u_{n-1} = g^{y_{n-1}} \rangle
 \]

 with \(s' \) a key for a collision-resistant hash family

 \[H_{s'} : G_T \times G \rightarrow \{0, 1\}^n \text{ and } y', y_0, \ldots, y_{n-1} \leftarrow_R \mathbb{Z}_r. \]

- Private key:

 \[
 \langle g_2^s, y', y_0, \ldots, y_{n-1} \rangle
 \]
The BMW construction: PKE from Waters’ IBE

Encrypt: Given a message $m \in \mathbb{G}_T$,

1. Choose random $z \in \mathbb{Z}_r$.

2. Compute the ciphertext

$$c = \langle c_1, c_2, c_3 \rangle = \langle m \cdot e(g_1, g_2)^z, g^z, H_W(w)^z \rangle \in \mathbb{G}_T \times \mathbb{G}_2$$

where

$$w = H_{s'}(c_1, c_2).$$
The BMW construction: PKE from Waters’ IBE

Decrypt: Given a ciphertext $c = \langle c_1, c_2, c_3 \rangle$ and the private key:

1. Compute $w = H_{s'}(c_1, c_2)$;

2. Test if $\langle g, c_2, H_W(w), c_3 \rangle$ is a DH quadruple by using the pairing (or more efficiently using knowledge of the values y', y_i).

3. Calculate

$$m = c_1/e(c_2, g_2^s).$$
The BMW construction: PKE from Waters’ IBE

- Scheme is similar to Waters’ IBE, but with “identity” in c_3 being computed from components c_1, c_2.
- Scheme is more efficient than CHK/BK approach – no external one-time signature/MAC involved.
- Security can be related to security of Waters’ IBE, so rests on hardness of DBDHP.
- Security proof needs full security model for IBE (selective-ID security not enough).
- A specific rather than a generic transform from IBE to PKE (c.f. CHK approach).
A Hierarchical Version of Waters’ IBE

- A simple generalisation of Waters’ IBE yields a HIBE scheme that is IND-ID-CPA secure assuming DBDHP is hard.

- IND-ID-CCA security for ℓ-level HIBE can be attained by applying CHK/BK/BMW ideas to the $(\ell + 1)$-level IND-ID-CPA secure scheme.

- $\ell = 2$ case gives IND-ID-CCA secure IBE.

- Size of public parameters grows linearly with ℓ.

- Quality of the security reduction declines exponentially with ℓ.
 - A recent alternative approach due to Kiltz and Galindo has a tighter reduction.
 - Recent scheme of Gentry (Eurocrypt 2006) also has tighter reduction, but a less natural hardness assumption.
Conclusions

- Pairing-based cryptography has seen very rapid development.
- Theoretical applications far beyond IBE.
- We have touched on just a few of the important contributions.
- More to come in the next talk.
- Recent focus on removing reliance on random oracle model – sometimes at the expense of relying on less natural hardness assumptions.