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Algebraic Techniques in Cryptanalysis

Algebra is the default tool in the analysis of asymmetric 
cryptosystems (RSA, ECC, Lattice-based, HFE, etc)
For symmetric cryptography (block and stream ciphers, 
hash functions), the most commonly used techniques are  
statistical in nature:

Block Ciphers: in linear and differential cryptanalysis (and  variants), 
the attacker attempts to construct statistical patterns through many 
interactions of the cipher.
Stream Ciphers: linear/differential, correlation attacks, 
distinguishing attacks, etc.
Hash Functions: differential attacks, etc.
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Algebraic Techniques in Cryptanalysis

However there has been recently an increase in interest in 
the use of algebraic techniques in the analysis of symmetric 
cryptosystems:

The choice of Rijndael as the AES (Rijndael has a rich algebraic
structure);
Cipher representations (dual, embeddings);
The proposal of algebraic attacks against stream ciphers (and block 
ciphers);
Parallel developments in asymmetric cryptography (multivariate 
cryptosystems: HFE, sFLASH, etc).

In this presentation will give an overview of algebraic 
cryptanalysis of block and stream ciphers (background and 
possible future directions…)
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Algebraic Attacks against Block Ciphers

Algebraic (rather than statistical) in nature: 
exploit the intrinsic algebraic structure of the algorithm.

The idea: polynomial description of block ciphers.
In theory, most block ciphers afford a polynomial 
representation of the encryption.

Early attempts to analyse ciphers with a somewhat 
simple algebraic structure date back to the early/mid 
90s.
Interpolation attack: 

Proposed by Jakobsen and Knudsen in 96. 
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Interpolation Attacks

Suppose a cipher can be expressed by a polynomial 
with total degree not too large.

By using n known plaintext/ciphertext pairs (xi, yi), one can 
construct an algorithm equivalent to the cipher 
(using the Lagrange Interpolation Formula).
The polynomial f(x) coincides with the encryption:

f(xi) = yi

Representing a cipher as a polynomial may allow 
encryption/decryption without knowledge of the key.
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Interpolation Attacks
However, for most ciphers the degree of such polynomial is 
just too high (too many unknown coefficients), perhaps 
approaching or exceeding the codebook.

Thus this should not offer any cryptanalytic benefit.
However it was applied against (a variant of) of SHARK
(SBox(x) = x-1).

Yet, the proposal of Interpolation Attacks ultimately shows 
some of the dangers of using operations with a very simple 
algebraic structure as component of an iterative cipher

even if these components were extremely good against 
conventional cryptanalysis, e.g. differential and linear 
cryptanalysis.
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Algebraic Attacks against Block Ciphers

An alternative, perhaps more promising approach, 
is to express the encryption operation as a system of 
polynomial equations. 

While in theory most modern block ciphers can be fully 
described by a system of multivariate polynomials over a 
finite field, for the majority of the cases such systems 
prove to be just too complex for any practical purpose. 
Yet there are a number of ciphers that present a highly 
algebraic structure, and could therefore be more 
vulnerable to algebraic attacks (e.g. the AES).
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Algebraic Attacks against Block Ciphers

“Algebraic Attack”: typically refers to the technique of 
expressing the whole cryptosystem as a large system of 
multivariate polynomial equations. 
In principle applicable to both block ciphers and stream 
ciphers.
Two steps:

Obtain a representation of the cipher as a system of 
equations.
Consider methods for solving the system.
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Polynomial System from Block Ciphers

Polynomial System from Block Ciphers:
Linear Equations from the diffusion layer and key 
addition.
Non-linear equations from the substitution layer.
Key Schedule Equations.
Field Equations.
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Polynomial System from Block Ciphers

For the non-linear equations, we distinct two cases:
Explicit equations: equations of the form 
yi = fi(x0, x1, … , xn-1). 
Implicit equations: equations of the form 
g(x0,…,xn-1; y0,…,ym-1) = 0.

One may consider algebraic attacks when these 
equations have small degree.
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Polynomial System from Block Ciphers

When mounting an algebraic attack, for each non-linear 
component of the cipher, one attempts to obtain as 
many low-degree, linearly independent equations as 
possible.
The more relations, the best.

it is well-known that overdefined systems are generally easier 
to solve .
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Polynomial System from Block Ciphers

Field Equations:
We are only interested in the solutions in the ground field 
(e.g. GF(2) or GF(28)).
However the method of solution may yield solutions in 
the algebraic closure.
So we also add to the system the so-called field equations

xq – x = 0 
for all variables in the system (over GF(q)).
This ensures that all solutions found are in GF(q).
Also in computations of the solution (say of its GB), all 
monomials are reduced by xiq – xi.
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Algebraic Attacks against Block Ciphers

In its general form, an algebraic attack is mounted by expressing 
the full cipher operation as a system of low-degree multivariate 
equations:

involving the (known) plaintext and ciphertext values, the secret key and a 
large number of intermediate variables arising in the cipher operation.
The field equations are often also included.
Results on very, very large systems (typically over GF(2)).

Attack usually requires only one single plaintext/ciphertext pair.
Solution = key recovery!!

Efficient algorithms for solving algebraic systems:
the essential ingredients of algebraic attacks and have recently started 
receiving special attention from the cryptographic community.
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Methods of Solution of Polynomial 
Systems

Solving multivariate polynomial systems is a typical 
problem studied in Algebraic Geometry and 
Computational Algebra.
Computer Algebra has recently become an 
important tool in cryptography.
Methods (used in cryptology):

Linearisation principle;
XL and variants;
Groebner Basis algorithms (Buchberger, F4 , F5).
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Solution of Polynomial Systems –
The Problem

Let k be a field and f1,…, fm be polynomials in n variables 
with coefficients in k, and K an algebraic extension of k. 
The problem is:

find (x1,…,xn) ∈Kn such that fi(x1,…,xn) = 0.

This problem is often studied in the context of abstract 
algebra:

let I ⊆ k[X1,…,Xn] be the ideal generated by f1,…, fm and
V(I) = {(x1, …, xn) ∈Kn; fi(x1, …, xn) = 0} the variety over K
associated to I. The problem is then to find V(I).
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Linearisation

The method of linearisation is a well-known 
technique for solving large systems of multivariate 
polynomial equations:

Consider all monomials in the system as independent 
variables and solve the system using linear algebra 
techniques (i.e. Gaussian reduction).
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Linearisation

The effectiveness of the method clearly depends of the 
number of linearly independent polynomials in the system. 
In the case of Boolean functions, the total number of 
monomials of degree · d is:

Complexity: O(N3), where N is the size of M (i.e. O(n3d)). 
In fact we may theoretically write O(Nω), where ω ≈ 2 + ε, if 
the matrix is sparse.
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Linearisation

Linearisation has been considered in the 
cryptanalysis of some LFSR-based stream ciphers. 

Each new bit of the key stream gives rise to a new 
equation on the key bits, and by using a large number of 
bits from the key stream, one should have in theory 
enough equations to directly apply linearization. 

Note however that the problem of estimating the 
rank of the linearised system is very difficult.
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Linearisation

In order to apply the linearization method, the 
number of LI equations in the system needs to be 
approximately the same as the number of 
monomials in the system.
When this is not the case, a number of techniques 
have been proposed that attempt to generate 
enough LI equations. 
The most prominent is the XL algorithm.
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XL (eXtended Linearisation) 
Courtois, Klimov, Patarin, Shamir, 2000

The XL algorithm aims at introducing new rows to the matrix M    
by multiplication of the original equations by monomials of 
prescribed degree (i.e. deg(Xβfj)· D, where D  is the parameter 
of the algorithm).
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XL Algorithm

A is system of m quadratic equations in n variables 
over a field k, and D ≥ 2 :

Multiply equations by monomials of degree up to D-2;
Linear Algebra step
Solve univariate equation and substitute
Repeat

The hope is that after few iterations, one can find a 
solution of A.
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XL Algorithm

The behaviour of the XL algorithm (termination, 
complexity) has been the focus of study in recent 
years.

In particular, its relationship to GB algorithms ( F4).
Since the introduction of the XL method, a number 
of variants have been proposed attempting to 
exploit some specific properties of the polynomial 
system.

Of particular relevance for the analysis of the block 
ciphers is the method proposed in 2002, called XSL.
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XSL (eXtended Sparse Linearisation) Algorithm

The XSL algorithm was introduced in 2002 by 
Courtois and Pieprzyk, and is derived from the XL 
algorithm. 
It is however a method which attempts to exploit 
the sparsity and specific structure of the equations.
XSL attracted a lot of attention of the cryptographic 
community and was the source of much 
speculation.
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XSL Algorithm

The claim was that with XSL one could:
mount a (at least theoretical) successful attack against the 
AES with 256-bit keys (using the system over GF(2));
mount a (at least theoretical) successful attack against the 
AES with 128-bit keys (using the system over GF(28)).

However recent results (Asiacrypt’05 and FSE’07) 
have shown that the algorithm does not work as 
expected (in particular, is not an efficient method to 
solve the system arising from the AES).
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Gröbner Basis Algorithms

Groebner Basis algorithms are perhaps the best 
known technique for solving polynomial systems. 
These algorithms return a basis for the ideal derived 
from the set of equations, which can then be used 
to obtain the solutions of the system.
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Gröbner Basis Algorithms

Classical algorithm: Buchberger algorithm
More recent algorithms: Faugère’s F4 and F5.

Use of Linear Algebra;
Found to be related to XL (expected to be more 
efficient);

It has found recent use in cryptography:
Joux and Faugère (CRYPTO’03) - HFE Challenge I (80 
variables and 80 equations over GF(2))
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Algebraic Attack – the AES

The only non-linear component of the AES (the S-Box) is based
on the inverse map on a finite field.

The function y = Inv(x) has high algebraic degree: y = x254

However the relations
y . x = 1  ,  y2 . x = y , y . x2 = x

give rise to 24 quadratic relations over GF(2) (23 always valid, 1 not valid if
x = 0).

Bits w=(w0 ,…,w7) and x=(x0 ,…,x7), relations such as:
0 = x0 +x6 +w0x2 +w0x5 +w0x6 +x0w7 +x0w5 +x0w2 +x2w5 +x2w3

+x3w7 +x3w4 +x3w2 +x4w6 +x4w3 +x4w1 +x5w6 +x5w5 +x5w4
+x5w2 +x5w1 +x6w6 +x6w7 +x6w5 +x6w3 +x7w6 + x7w7 + x7w5
+x7w4 + x7w2 + x1w6 + x1w4 + x1w1+1
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Algebraic Attack against the AES

By combining all equations throughout the cipher, one 
can express the full AES encryption transformation as a 
large, sparse and overdefined system of multivariate 
quadratic equations over GF(2). 
(Courtois and Pieprzyk, 2002).
Encryptions for different plaintext give rise to different 
systems (different intermediate variables).
By performing substitutions we can construct system:

8000 quadratic equations with 1600 variables for the AES-
128. 
9600 equations if we include the field relations



04.May.2007 ECRYPT Summer School 29

Algebraic Attack against the AES

By representing the AES in an alternative way (using the  
BES cipher), we can obtain a similar system over GF(28):

Quadratic equations are however simpler (xw=1).
It is currently not known which of the two systems of 
equations would be more suitable for mounting an algebraic 
attack against the AES. 
The question: would we be able to (theoretically) solve such 
systems faster than exhaustive key search (i.e. the order of < 
2128 operations)??

The hope is that all we have to do is to compute the Groebner basis 
for the AES to recover the secret key.
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Groebner basis for the AES 
(Buchmann, Pychkin, Weinmann - 2006)

Actually, we already have a GB for the AES!!
It has been shown that we can construct in 
straightforward manner a GB for the AES (and 
other ciphers) wrt degree lexicographic ordering

336 variables and equations:
176 polynomial equations arising from the encryption 
operation and 160 from the key schedule.
200 have total degree 254 while the remaining 136 are 
linear.
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Groebner basis for the AES

As a result, we have that the AES ideal is 0-dimensional.
R/I has dimension 254200 ≈ 21598

So we have many solutions in the algebraic closure.
We have already a GB for AES, but with wrong ordering!!

New problem: changing ordering.
Infeasible with current known methods.

The natural obvious approaches do not seem to provide a direct 
solution to the key recovery problem.

Yet it is quite surprising that a Groebner basis for the AES can be obtained in such 
straightforward manner.
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Algebraic Attacks against Block Ciphers –
is there hope?

Algebraic attacks have received a lot of attention of the 
cryptographic community in recent years.

Many strong early claims.
However there has not been too much progress in 
assessing whether they can be effective against block 
ciphers in general.

Experiments with small ciphers (small versions of the AES 
- FSE’05, and Flurry and Curry – RSA-CT 2006) have 
indicated that modern block cipher features (strong 
diffusion, etc) make algebraic attacks quite hard.
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Algebraic Attacks against Block Ciphers –
Future Directions

Current Groebner basis algorithms are powerful tools.
they are however general-purpose algorithms, which are 
used to deal with a number of problems (including 
computing the solutions of a system). 

Systems arising from ciphers are very structured and with 
special properties:

they are usually sparse, with unique solution over a finite 
field, structured in blocks of similar format (rounds), etc.
Experiments show this can help computations 
(G. Ars’ PhD Thesis 2005)
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Algebraic Attacks – Future Directions
Perhaps the most promising approach is the development 
of dedicated methods for specific ciphers.

In a way, XSL was perhaps the first (albeit unsuccessful) 
attempt.

Block Cipher systems can be viewed as a set of iterated 
systems of equations, with similar blocks for every round.

Blocks are connected via the input and output, as well as 
key schedule.

Dedicated methods could exploit these features. Examples:
meet-in-the-middle technique.
Groebner Surfing.
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Meet-in-the-Middle
(Cid et al. 2005)

Rather than solving the full system of equations for n
rounds, try to solve two subsystems with n / 2 rounds.
Two systems:

Solve S1 to obtain k5(w6);
Solve S2 to obtain k6(w6);

Solve S3 = {k5(w6), k6(w6), k6(k5) }
This technique is cryptographically (and algebraically) 
intuitive.

Simulations show that it does indeed work better than solving the full 
system!
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Groebner Surfing
(Albrecht 2007)

Incrementally compute the Groebner Basis.

This method seems to be more efficient than direct 
computation (especially if combined with MITM).
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Algebraic Attacks – Future Directions

Probabilistic Approach:
Combine algebraic attacks with typical probabilistic 
cryptanalytic methods.
This may simplify the equations and reduce complexity 
of computations.
AES S-Box:

Instead of y = x254, use xy = 1.

Boolean monomials of very high degree equal to zero.
Low-Degree Approximations (linear cryptanalysis).
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Algebraic Attacks – Future Directions

In its current form, algebraic attack is a key 
recovery attack.

1 plaintext/ciphertext pair, and key recovery!! 

Can we use the algebraic structure of ciphers for 
mounting less ambitious attacks?
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Algebraic Attacks – Stream Ciphers

In contrast to block ciphers, algebraic attacks have 
been (in theory) quite effective in the analysis of 
several LFSR-based stream ciphers.
Exploit the fact that each new bit of the keystream
gives a new equation on the initial state.
Collect a large number of bits from the keystream
to construct the system of equations.
First introduced by Courtois and Meier.

applies to LFSR-based ciphers, using non-linear Boolean 
functions as combiner or filter.
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Filter Generator

Output is computed using a non-linear function of 
the contents of the LFSR.

LFSR 1

f

bt
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Combination Generator

We combine the outputs from n LFSRs

LFSR 1

LFSR 2

LFSR n

… f

yn

y2

y1

bt
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Filter and Combination Generators

Boolean Function f – known design criteria:
It should have a high algebraic degree;
It should have high non-linearity;
It should be balanced;
It should be correlation-immune of high order.

there are some trade-offs to consider.
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The problem for the cryptanalyst

If (k0, k1, …, kn-1) is the initial state, L is the linear 
recursion function, f is the combining function and bi the 
output bits then

Given b0, b1, …, bt , we want to recover (k0, k1, …, kn-1)
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Algebraic Attack - First Attempt 

Obtain enough bt to construct a system large enough such 
that it has unique solution.

the problem is that if f has high algebraic degree, solving the system 
is very difficult.
we could just keep collecting enough bits until we have a system
very overdefined for solving it by linearisation.
But then we would need around

keystream bits and the attack would have complexity R3 .

i.e. the complexity of the attack is polynomial in the key size but 
exponential in the degree.
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Algebraic Attacks

The goal is to obtain a (hopefully overdefined) 
system of low degree equations.

Usually f has high degree;
A possible approach: obtain low-degree approximation 
of the function f with high probability.
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Toyocrypt

Toyocrypt: submission to CRYPTEC.
Filter generator with one LFSR of length 128, and output 
function of degree 63.

f satisfies all previously known design criteria.
However, monomials of degree 17 and 63 will be almost 
always zero!!

We can use this fact to construct good approximations of degree 4, 
with probability ≈ 1 – 217 ! 
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Algebraic Attacks

What if it is not possible to obtain good low degree 
approximations?

Try to reduce the degree of the equations!

Suppose that f has high degree. We search for 
function g of low degree such that the relation

has low degree (i.e. h has low degree).
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Toyocrypt

Monomials of degree 4, 17 and 63 all have a 
common factor s23s42 .
Let g1(s) = (s23 + 1) and g2(s) = (s42 + 1).

then h1(s) = f(s) g1(s) and h2(s) = f(s) g2(s) have 
degree 3.
so for each output bit, we have 2 low degree equations.
using linearisation, we need around 220 keystream bits, 
with attack complexity ≈ 250 .



04.May.2007 ECRYPT Summer School 50

Algebraic Attacks against Stream Ciphers

In general we have:
(Theorem) Let f be a Boolean functions in k variables.
Then there is a function g ≠ 0, of degree at most d k/2 e
such that f(s).g(s)  is of degree at most b k/2 c . 
So instead of direct attack (using linearisation) with 
complexity

we can do with (square root attack)
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Algebraic Attacks against Stream Ciphers

The attack can be adapted to ciphers that are not 
regularly clocked:

applied to LILI-128 (NESSIE submission).
Uses function of degree 6 with only 10 variables; however
f . (x9 + 1) . (x10 + 1) has degree 4.

The attack can also be generalised for stream ciphers 
using combiners with memory

applied to Bluetooth generator E0.

The attack can be improved (fast algebraic attacks).
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Algebraic Attacks – Consequences to Design 
Criteria for LFSR-based Stream Ciphers

Output function f should use a large subset of state 
bits (LILI-128 used 10 out of 89).
Output function f should have many different 
terms.
No multivariate equations of low degree should 
exist relating the key bits and one or more output 
bits.
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Algebraic Attacks – Consequences to Design 
Criteria for LFSR-based Stream Ciphers

In general, algebraic attacks are possible when there 
exist g , h of low degree for which either
f . g = 0.
(f + 1) . h = 0

If f(s) = bt = 1, then we use the first relation and 
have g(s) = 0.
If f(s) = bt = 0, then we use the second relation and 
have h(s) = 0.
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Algebraic Attacks – Consequences to Design 
Criteria for LFSR-based Stream Ciphers

Consequently, to mount such attack we need to 
search for low degree annihilators of f and (f+1).
The lowest degree of such annihilators is called the 
algebraic immunity (AI) of f.
For LFSR of length 2k and AI d, the attack 
complexity would be
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Algebraic Attacks against Stream Ciphers

Algebraic immunity is currently a design criterion 
for designing LFSR-based (combination and filter) 
stream ciphers.
Can we extend it to other types of ciphers?
Computation of complexity is made considering 
linearisation as method of solution.

can we use any information about the cipher to apply a 
more efficient method ? 
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Some New Approaches for Algebraic 
Cryptanalysis

New Techniques for Solving Sparse Systems of 
Equations (Raddum and Semaev – 2007)

Equations are not represented as polynomials.
Algorithm can be seen as message-passing on a graph.
Experiments with DES, small AES, with good results. 
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Some New Approaches for Algebraic 
Cryptanalysis

Using SAT-Solvers
Propositional Satisfiability Problem (SAT) - determining 
whether the variables of a given Boolean formula can be 
assigned such that the formula evaluates to TRUE.
SAT-Solvers are algorithms used for testing satisfiability
formulae.
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Some New Approaches for Algebraic 
Cryptanalysis

Algebraic Attacks using SAT-Solvers (Bard, 
Courtois and Jefferson – 2007)

Boolean Equations are described in the conjunctive 
normal form (CNF).
SAT-Solver used to solve the system.
Applied to reduced-round DES, KeeLoq (Stream 
Cipher), with good results.
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Some New Approaches for Algebraic 
Cryptanalysis

Can SAT-Solver based attacks be considered 
“algebraic attacks”?

Variables are assigned values.
Consistency is checked.
If wrong, it learns why (and add the condition).
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Some New Approaches for Algebraic 
Cryptanalysis

Intelligent Exhaustive Key Search:

C

P

K0, K1, K2, …, Ki, …K0, K1, K2, …, Ki, …

P

C
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Conclusions

Many interesting problems in this area.
Algebraic Attacks have been receiving a lot of 
attention.

For stream ciphers, it has already been incorporated into 
design criteria.
For block cipher, it still not very well understood (we are 
not sure of its merits and limitations).
New methods arising (with more success).

Possible direction to go: combination of different methods.
Hash Functions?
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